• Title/Summary/Keyword: model-driven

Search Result 1,981, Processing Time 0.03 seconds

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Analysis and Design of a Motor Driven Tilt/Telescopic Steering Column for Safety Improvement (안전도를 고려한 전동 틸트/텔레스코픽 조향주의 해석 및 설계)

  • Sin, Mun-Gyun;Hong, Seong-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1479-1490
    • /
    • 2000
  • The design process of the motor driven tilt/telescopic steering column is established by axiomatic design approach in conceptual design stage. By selecting independent design variables for improvin g performance of the steering system, each detailed design can be carried out independently. In the detailed design, the safety in crash environment and vibration reduction are considered. An occupant analysis code SAFE(Safety Analysis For occupant crash Environment) is utilized to simulate the body block test. Segments, contact ellipsoids and spring-damper elements are used to model the steering column in SAFE. The model is verified by the result of the body block test. After the model is validated, the energy absorbing components are designed using an orthogonal array. Occupant analyses are performed for the cases of the orthogonal array. Final design is determined for the minimum occupant injury. For vibrational analysis, a finite element model of the steering column is defined for the modal analysis. The model is validated by the vibration experiment. Size and shape variables are selected for the optimization process. An optimization is conducted to minimize the weight subjected to various constraints.

Context Driven Component Model Supporting Scalability of Context (상황정보의 확장성을 지원하는 상황정보 기반 컴포넌트 모델)

  • Yoon, Hoi-Jin;Choi, Byoung-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • Since Context Driven Component model is based on the idea that a context-aware application consists of the components that are context sensitive and the components that do not depend on the context, it divides the context sensitive part into components according to which context information they are related to. The model supports the scalability of context information by building an application through composing Context Driven Components. Furthermore, it solves the embeddedness of context information inside the application logic. To show the contributions of the model, this paper applies it to Call-forwarding application, and analyses how the model supports the scalability and the embeddedness.

Evaluation of Emergency Water Supply Plan for Block System of Water Network using WaterGEMS (WaterGEMS모형을 이용한 상수관망 블록시스템의 비상급수계획 평가)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon;Yoo, Do-Guen;Lee, Kwang-Choon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.15-20
    • /
    • 2008
  • Hydraulic analysis of water distribution system can be divided into demand-driven analysis and pressure-driven analysis. Demanddriven analysis can give unrealistic results to simulate hydraulic conditions under abnormal operating conditions such as sudden demand increase and pipe failure. In Korea, demand-driven analysis has been used to establish emergency water supply plan in many water projects, but it is necessary to use pressure-driven analysis for establishment of emergency water supply plan. In this study, WaterGEMS model that was developed for pressure-driven analysis is used to evaluation of emergency water supply plan of J city. As the results, it was able to draw up more efficient plan for water supply in small block, and established emergency water supply plan of J city was determined to be appropriate.

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position (이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

Multivariate adaptive regression spline applied to friction capacity of driven piles in clay

  • Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • This article employs Multivariate Adaptive Regression Spline (MARS) for determination of friction capacity of driven piles in clay. MARS is non-parametric adaptive regression procedure. Pile length, pile diameter, effective vertical stress, and undrained shear strength are considered as input of MARS and the output of MARS is friction capacity. The developed MARS gives an equation for determination of $f_s$ of driven piles in clay. The results of the developed MARS have been compared with the Artificial Neural Network. This study shows that the developed MARS is a robust model for prediction of $f_s$ of driven piles in clay.

Japanese Experiences of Smart City Policies: User-Driven Innovation in Smart Community Projects

  • Yamashita, Jun
    • World Technopolis Review
    • /
    • v.7 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Since the term smart city was coined, theories and practices of smart cities have flourished. Regarding the theoretical aspect, user-driven innovation has been discussed in studies on the innovation ecosystems of smart cities. Smart cities have been built in various countries around the world in recent years, including in Japan, which has experienced the same global trends in smart cities since 2010. Four smart community projects run by the Agency for Natural Resources and Energy between 2010 and 2014 followed such trends. The present study addressed user-driven innovation using the quadruple helix model as an analytical framework for the four smart community projects, and the outcomes of the projects were evaluated. In conclusion, the smart community projects were evaluated as successful. However, it was revealed that these projects were not completely conducive to user-driven innovation.

Analysis of Phase Noise in Frequency Synthesizer with DDS Driven PLL Architecture (DDS Driven PLL 구조 주파수 합성기의 위상 잡음 분석)

  • Kwon, Kun-Sup;Lee, Sung-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1272-1280
    • /
    • 2008
  • In this paper, we have proposed a phase noise model of fast frequency hopping synthesizer with DDS Driven PLL architecture. To accurately model the phase noise contribution of noise sources in frequency hopping synthesizer, they were investigated using model of digital divider for PLL, DAC for DDS and Leeson's model for reference oscillator and VCO. Especially it was proposed that the noise component of low pass filter was considered together with the phase noise of VCO. Under assuming linear operation of a phase locked loop, the phase noise transfer functions from noise sources to the output of synthesizer was analyzed by superposition theory. The proposed phase noise prediction model was evaluated and its results were compared with measured data.

AJFCode: An Approach for Full Aspect-Oriented Code Generation from Reusable Aspect Models

  • Mehmood, Abid;Jawawi, Dayang N.A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1973-1993
    • /
    • 2022
  • Model-driven engineering (MDE) and aspect-oriented software development (AOSD) contribute to the common goal of development of high-quality code in reduced time. To complement each approach with the benefits of the other, various methods of integration of the two approaches were proposed in the past. Aspect-oriented code generation, which targets obtaining aspect-oriented code directly from aspect models, offers some unique advantages over the other integration approaches. However, the existing aspect-oriented code generation approaches do not comprehensively address all aspects of a model-driven code generation system, such as a textual representation of graphical models, conceptual mapping, and incorporation of behavioral diagrams. These problems limit the worth of generated code, especially in practical use. Here, we propose AJFCode, an approach for aspect-oriented model-driven code generation, which comprehensively addresses the various aspects including the graphical models and their text-based representation, mapping between visual model elements and code, and the behavioral code generation. Experiments are conducted to compare the maintainability and reusability characteristics of the aspect-oriented code generated using the AJFCode with the most comprehensive object-oriented code generation approach. AJFCode performs well in terms of all metrics related to maintainability and reusability of code. However, the most significant improvement is noticed in the separation of concerns, coupling, and cohesion. For instance, AJFCode yields significant improvement in concern diffusion over operations (19 vs 51), coupling between components (0 vs 6), and lack of cohesion in operations (5 vs 9) for one of the experimented concerns.