Voice technology allows consumers to make purchases through smart devices, and the interest in voice-driven conversational commerce has significantly expanded. In this study, we explored the continuance use intention of voice commerce, and the adoption of a value-attitude-behavior model. An online survey was conducted on 360 individuals who used an artificial intelligence assistant device in a voice commerce environment. We used Amos 23.0 and SPSS 25.0 for descriptive, confirmatory, and structural equation modeling analyses. These results indicated that functional value was the highest influencing variable on satisfaction of voice commerce, while social, emotional, and epistemic values significantly influenced it as well. Additionally, satisfaction of voice commerce significantly influenced the continuance use intention of voice commerce. These findings could help us understand the characteristics of voice commerce users and the diversity value in voice commerce environment.
This study aims to evaluate the performance of an electric multi-purpose cultivator through a simulation analysis. The simulation model was developed using commercial software, Simulation X, by applying the specifications of certain parts, such as an electric motor, a battery, and so on. The input parameter of the simulation was the engine load data according to the rotary tillage level using a conventional multi-purpose cultivator. The data were collected by configuring a load measurement system, and the load cycle was developed by repeating the data collection process under the most severe conditions. The average output engine torque values of conventional multi-purpose cultivator were 10.7, 13.0, 9.4, and 11.2 Nm in the D1P1, D1P2, D2P1, and D2P2 conditions, respectively. As a result of the simulation, the maximum values of the motor torque, rotational speed, and power of the electric multi-purpose cultivator were 16.8 Nm, 2,033.3 rpm, and 3.3 kW, respectively, and the motor was driven in sections within 70, 68, and 45% of the maximum output range. The rate of decrease of the battery state of charge (SOC) level per minute was approximately 0.6%, and it was possible to supply electric power to the motor for 9,550 sec. In the future study, research to verify and improve simulation models of electric multi-purpose cultivators should be conducted.
Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
Smart Structures and Systems
/
v.32
no.5
/
pp.319-338
/
2023
The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.
This study aims to provide a better understanding of the turbulent flow characteristics in swash zone. A double dam-break method is employed to generate the swash zone flow. Comparing with the conventional single dam-break method, a delay between two gate opening can be controlled to reproduce various interactions between uprush and backwash. For numerical simulations, overInterDyMFoam based on OpenFOAM is adopted. Using overInterDyMFoam, interface between two immiscible fluids having different densities (i.e., air and water phases) can be tracked in a moving mesh with multiple layers. Two-dimensional Reynolds-Averaged Navier-Stokes equations are solved with a standard 𝜅-𝜖 turbulence model for momentum and continuity. Numerical model results are validated with laboratory experiment data for the time series of water depth and streamwise velocity. Turbulent kinetic energy distribution is further investigated to identify the turbulence evolution for each flow regime (i.e., uprush, backwash, and swash-swash interaction).
Bae, Sang Hoon;Cho, Eun Won;Han, Song Ie;Jeong, Yoo Ji;Kim, Kyeong Eon
Journal of Engineering Education Research
/
v.27
no.2
/
pp.35-50
/
2024
The purpose of this study is to identify the core competencies of graduate students at A research university in the context of graduate education in science and engineering, and to develop and validate a diagnostic tool to measure them. To achieve the research objectives, first, 6 factors and 18 sub-competencies of core competencies were derived based on a review of domestic and foreign studies, cases of excellent research-centered overseas universities, and interviews with members of A University. Second, a theoretical model was constructed by deriving behavioral indicators based on the core competencies and sub-competencies, and a preliminary survey was conducted on 188 graduate students of University A to verify the statistical validity of the theoretical model. Results of exploratory and confirmatory factor analysis, the core competencies of graduate students at A research university consisted of 6 factors, 16 sub-competencies, and 77 items. Specifically, it included "Independent research capability(13 items)", "Social Entrepreneurship(10 items)", "Academic agility(15 items)", "Ingenious Challenges(15 items)", "Collegial Collaboration(9 items)", and "Mueunjae leadership(15 items)". This study contributes to the development of theories related to core competencies of graduate students in science and engineering, and has practical significance as a basis for a data-driven competency-based graduate education system.
Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
Nuclear Engineering and Technology
/
v.56
no.4
/
pp.1310-1319
/
2024
The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.
The Voids in the Mineral Aggregate (VMA) within asphalt mixtures play a crucial role in defining the mixture's structural integrity, durability, and resistance to environmental factors. Accurate prediction and optimization of VMA are essential for enhancing the performance and longevity of asphalt pavements, particularly in varying climatic and environmental conditions. This study introduces a novel machine learning framework leveraging ensemble machine learning model for predicting VMA in asphalt mixtures. By analyzing a comprehensive set of variables, including aggregate size distribution, binder content, and compaction levels, our framework offers a more precise prediction of VMA than traditional single-model approaches. The use of advanced machine learning techniques not only surpasses the accuracy of conventional empirical methods but also significantly reduces the reliance on extensive laboratory testing. Our findings highlight the effectiveness of a data-driven approach in the field of asphalt mixture design, showcasing a path toward more efficient and sustainable pavement engineering practices. This research contributes to the advancement of predictive modeling in construction materials, offering valuable insights for the design and optimization of asphalt mixtures with optimal void characteristics.
Sungwon Choi;Lifang Chang;Mijeong Kim;Jonghyun Park
Asia-Pacific Journal of Business
/
v.14
no.4
/
pp.49-65
/
2023
Purpose - In the Korean and Chinese social landscape, it is vital to appreciate the significance of the Japanese history problem. The current study investigated whether the perception of the Japanese history problem affects decisions regarding technology adoption in organizations by comparing South Korea and China. Design/methodology/approach - The study involved 305 Korean and 379 Chinese participants who responded to scenarios and surveys regarding the adoption of workplace surveillance cameras supplied by a Japanese company. Findings - Using a moderated mediation model based on protection motivation theory (PMT), we found that past experiences of privacy invasion significantly reduced trust in the adoption of surveillance cameras at work. This relationship was mediated by respondents' perceptions of security vulnerability. The current study, however, did not confirm any significant moderating effect of the Japanese history problem priming on trust in the adoption of workplace surveillance cameras. Research implications - This suggests that the Japanese history problem may have a limited impact on organizational technology adoption decisions, different from the political consumerism behavior driven by public anti-Japanese affectivity. The current study reaffirms the validity and applicability of PMT and provides both theoretical insights and practical recommendations.
Syed Farhan Alam ZAIDI;Muhammad Sibtain ABBAS;Rahat HUSSAIN;Aqsa SABIR;Nasrullah KHAN;Jaehun YANG;Chansik PARK
International conference on construction engineering and project management
/
2024.07a
/
pp.1238-1245
/
2024
The construction industry faces the challenge of providing effective, engaging, and rule-specific safety learning. Traditional methodologies exhibit limited adaptability to technological advancement and struggle to deliver optimal learning experiences. Recently, there has been widespread adoption of information retrieval and ontology-based chatbots, as well as content delivery methods, for safety learning and education. However, existing information and content retrieval methods often struggle with accessing and presenting relevant safety learning materials efficiently. Additionally, the rigid and complex structures of ontology-based approaches pose obstacles in accommodating dynamic content and scaling for large datasets. They require more computational resources for ontology management. To address these limitations, this paper introduces iSafe Chatbot, a novel framework for construction safety learning. Leveraging Natural Language Processing (NLP) and Large Language Model (LLM), iSafe Chatbot aids safety learning by dynamically retrieving and interpreting relevant Occupational Safety and Health Administration (OSHA) rules from the comprehensive safety regulation database. When a user submits a query, iSafe Chatbot identifies relevant regulations and employs LLM techniques to provide clear explanations with practical examples. Furthermore, based on the user's query and context, iSafe Chatbot recommends training video content from video database, enhancing comprehension and engagement. Through advanced NLP, LLM, and video content delivery, iSafe Chatbot promises to revolutionize safety learning in construction, providing an effective, engaging, and rule-specific experience. Preliminary tests have demonstrated the potential of the iSafe Chatbot. This framework addresses challenges in accessing safety materials and aims to enhance knowledge and adherence to safety protocols within the industry.
Park, Sang Hyeok;Oh, Seung Hee;Park, Jeong Seon;Lee, Myoung Kwan
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.11
no.2
/
pp.89-100
/
2016
This article analyzes two different strategies that both aim at creating innovative design or problem solving: design thinking and action learning. User-driven innovation strategy that has become more and more popular during the last decades is "design thinking". Based on designerly methods and principles, this strategy was developed by the design consultancy IDEO in the late 90s. Action learning is a pragmatic and moral philosophy based on a deeply humanistic view of human potential that commits us, via experiential learning, to address the intractable problems of organizations and societies. This paper provides a structured analysis and comparison of the two innovation strategies-design thinking and action learning-with the goal to identify potentials to enrich either of the two by merging or adapting specific parts or aspects. Although there are significant differences in both strategies, there are also several similarities in methodology and process design. This article compares process models for action learning and design thinking and highlights the specific differences and similarities. As a result, we suggested a union model of action learning and design thinking, and verified a this model through a case study. We complemented the process of team building and reflection of action learning for union model. Also, we statistically verified through a case study to validate the superiority of the design thinking model which complemented action learning. This article contributes to a better understanding of both-design thinking and action learning, and it may help to improve either of the two strategies to foster social innovation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.