• 제목/요약/키워드: model-driven

Search Result 1,981, Processing Time 0.024 seconds

Capital Outflow Waves in the Korean Economy during Financial Turmoil: Its Implications and Policy Suggestions

  • Suh, Jae-Hyun
    • Journal of Korea Trade
    • /
    • v.23 no.7
    • /
    • pp.113-127
    • /
    • 2019
  • Purpose - This paper investigates whether financial crises could be the indicators of capital outflow waves or vice versa in Korea. Korea has experienced two severe financial crises, which are the Asian Crisis and the global financial crisis. Although there were many variables associated with these two remarkable events, one notable variable was gross capital outflows, which had significantly increased around them. Motivated by existing literature which built theoretical frameworks explaining the relationship between capital flight and financial crises, we examine the empirical evidence for this relationship. Design/methodology - We use panel data from 61 countries including Korea from 1980 to 2009 to study the associations between capital flight and diverse financial crises such as banking, currency, debt, and inflation crises. To be specific, we use the complementary log-log model to see whether capital outflow waves are reliable indicators for domestic financial crises. Findings - The results show, first, that banking, currency, and inflation crises are associated with capital flight. Second, debt crises are also associated with capital flight, but the result is not robust to different specifications. And, third, the positive associations between capital flight and crises are mainly driven by banking flows rather than FDI and portfolio flows. Originality/value - This paper is one of a few studies that investigates domestic (not foreign) investors' behavior during financial turmoil. Furthermore, theoretical studies which provide contradictory explanations on the movements of gross capital outflows during financial crises emphasizes the importance of empirical evidence in this paper.

Key Indicators for the Growth of Logistics and Distribution Tech Startups in Thailand

  • Thanatchaporn JARUWANAKUL
    • Journal of Distribution Science
    • /
    • v.21 no.2
    • /
    • pp.35-43
    • /
    • 2023
  • Purpose: As Thailand seeks to become a regional startup hub, Thai startups have been acquiring growth and scalability in the last ten years. Hence, this paper examines influential factors in Thailand's growth of logistics tech startups. The conceptual framework incorporates sensing user needs, sensing technological options, conceptualizing, scaling, and stretching, co-producing, and orchestrating, business strategy, strategic flexibility, and startup growth. Research design, data, and methodology: The quantitative method was applied to distribute the questionnaire to 500 managers and above in logistics tech startups in Thailand. The sampling techniques involve judgmental, convenience, and snowball samplings. Before the data collection, The Item Objective Congruence (IOC) Index and pilot test (n=45) were employed for content validity and reliability. The data were mainly analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The findings revealed that sensing technological options, scaling, and stretching, co-producing, and orchestrating, and business strategy significantly influence the growth of startups in Thailand. Nevertheless, sensing user needs, conceptualizing, and strategic flexibility have no significant relationship with startup growth. Conclusions: For Thailand to accelerate its digital economy driven by tech startups, firms must emphasize influential factors to accelerate growth by providing the right tech solutions for people's lives.

Data-driven camera manipulation about vertical locomotion in a virtual environment (가상환경에서 수직 운동에 대한 데이터 기반 카메라 조작)

  • Seo, Seung-Won;Noh, Seong-Rae;Lee, Ro-Un;Park, Seung-Jun;Kang, Hyeong-Yeop
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, the goal is to investigate how manipulating the camera can minimize motion sickness and maximize immersion when a user moves in a virtual environment that requires vertical movement. In general, since a user uses virtual reality in a flat space, the actual movement of the user and the virtual movement are different, resulting in sensory conflict, which has the possibility of causing virtual reality motion sickness. Therefore, we propose three powerful camera manipulation techniques, implement them, and then propose which model is most appropriate through user experiments.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Traffic Forecast Assisted Adaptive VNF Dynamic Scaling

  • Qiu, Hang;Tang, Hongbo;Zhao, Yu;You, Wei;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3584-3602
    • /
    • 2022
  • NFV realizes flexible and rapid software deployment and management of network functions in the cloud network, and provides network services in the form of chained virtual network functions (VNFs). However, using VNFs to provide quality guaranteed services is still a challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take instances of the same size and determine a suitable deployment location without considering the cloud network resource distribution. This paper proposes a traffic forecasted assisted proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node resource. We first model the VNF scaling as integer quadratic programming and then propose a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic forecasting method based on LSTM to predict the upcoming traffic demands. With the obtained traffic demands, we design a resource-aware new VNF instance deployment algorithm to scale out under-provisioning VNFs and a redundant VNF instance management mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our proposed approach can respond to traffic fluctuation in advance and reduce the total cost significantly.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Online Adaptation of Control Parameters with Safe Exploration by Control Barrier Function (제어 장벽함수를 이용한 안전한 행동 영역 탐색과 제어 매개변수의 실시간 적응)

  • Kim, Suyeong;Son, Hungsun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.76-85
    • /
    • 2022
  • One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.