DOI QR코드

DOI QR Code

Data-driven camera manipulation about vertical locomotion in a virtual environment

가상환경에서 수직 운동에 대한 데이터 기반 카메라 조작

  • 서승원 (경희대학교 소프트웨어융합학과) ;
  • 노성래 (경희대학교 소프트웨어융합학과) ;
  • 이로운 (경희대학교 소프트웨어융합학과) ;
  • 박승준 (경희대학교 소프트웨어융합학과) ;
  • 강형엽 (경희대학교 소프트웨어융합학과)
  • Received : 2022.06.18
  • Accepted : 2022.07.05
  • Published : 2022.07.26

Abstract

In this paper, the goal is to investigate how manipulating the camera can minimize motion sickness and maximize immersion when a user moves in a virtual environment that requires vertical movement. In general, since a user uses virtual reality in a flat space, the actual movement of the user and the virtual movement are different, resulting in sensory conflict, which has the possibility of causing virtual reality motion sickness. Therefore, we propose three powerful camera manipulation techniques, implement them, and then propose which model is most appropriate through user experiments.

본 논문에서는 수직이동이 필요한 가상환경을 사용자가 이동할 때, 어떻게 카메라를 조작하는 것이 멀미를 최소화하면서도 몰입감을 극대화할 수 있는지를 조사하는 것이 목표이다. 일반적으로 사용자는 평평한 공간에서 가상현실을 이용하므로, 사용자의 실제 이동과 가상에서의 이동이 달라져 감각 충돌이 일어나게 되고, 이는 가상현실 멀미를 유발할 가능성을 가진다. 그러므로 3가지의 유력한 카메라 조작기법을 제안하고, 이들을 구현한 후, 사용자 실험을 통해 가장 적절한 모델이 어떤 것인지를 제안하고자 한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW 중심대학 사업(2017-0-00093)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구(NRF-2020R1F1A1076528) 사업으로 수행됨.

References

  1. Oman, Charles M. "Motion sickness: a synthesis and evaluation of the sensory conflict theory." Canadian journal of physiology and pharmacology, vol. 68, no.2, pp. 294-303, 1990. https://doi.org/10.1139/y90-044
  2. Chang, Eunhee, Hyun Taek Kim, and Byounghyun Yoo. "Virtual reality sickness: a review of causes and measurements." International Journal of Human-Computer Interaction, vol. 36, no. 17, pp. 1658-1682, 2020. https://doi.org/10.1080/10447318.2020.1778351
  3. Kennedy, Robert S., et al. "Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness." The international journal of aviation psychology, vol. 3, no. 3, pp 203-220, 1993. https://doi.org/10.1207/s15327108ijap0303_3
  4. Schubert, Thomas, Frank Friedmann, and Holger Regenbrecht. "The experience of presence: Factor analytic insights." Presence: Teleoperators & Virtual Environments, vol. 10, no. 3, pp. 266-281, 2001. https://doi.org/10.1162/105474601300343603
  5. Fernandes, Ajoy S., and Steven K. Feiner. "Combating VR sickness through subtle dynamic field-of-view modification." 2016 IEEE symposium on 3D user interfaces (3DUI). IEEE, 2016.
  6. Gersak, Gregor, Huimin Lu, and Joze Guna. "Effect of VR technology matureness on VR sickness." Multimedia Tools and Applications, vol. 79, no. 21, pp. 14491-14507, 2020. https://doi.org/10.1007/s11042-018-6969-2
  7. Lee, Jiwon, Mingyu Kim, and Jinmo Kim. "A study on immersion and VR sickness in walking interaction for immersive virtual reality applications." Symmetry, vol. 9, no. 5, pp. 78, 2017. https://doi.org/10.3390/sym9050078
  8. Razzaque, Sharif, et al. "Redirected walking in place." EGVE, vol. 2, 2002.
  9. Cho, Yong-Hun, et al. "Walking outside the box: Estimation of detection thresholds for non-forward steps." 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 448-454, 2021.
  10. Min, Dae-Hong, et al. "Shaking hands in virtual space: Recovery in redirected walking for direct interaction between two users." 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 164-173, 2020.
  11. Seo, MinYeong, and HyeongYeop Kang. "Toward virtual stair walking." The Visual Computer, vol. 37, no. 9, pp. 2783-2795, 2021. https://doi.org/10.1007/s00371-021-02179-2
  12. Sacks, Rafael, Amotz Perlman, and Ronen Barak. "Construction safety training using immersive virtual reality." Construction Management and Economics, vol. 31, no. 9, pp. 1005-1017, 2013. https://doi.org/10.1080/01446193.2013.828844
  13. Weiss, Patrice L., Pnina Bialik, and Rachel Kizony. "Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities." CyberPsychology & Behavior, vol. 6, no. 3, pp. 335-342, 2003. https://doi.org/10.1089/109493103322011650
  14. Rothe, Sylvia, Boris Kegeles, and Heinrich Hussmann. "Camera heights in cinematic virtual reality: How viewers perceive mismatches between camera and eye height." Proceedings of the 2019 acm international conference on interactive experiences for tv and online video. 2019.
  15. Lecuyer, Anatole, et al. "Camera motions improve the sensation of walking in virtual environments." IEEE virtual reality conference (VR 2006). IEEE, 2006.
  16. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature, vol. 521, no. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  17. Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units (elus)." arXiv preprint arXiv:1511.07289, 2015.
  18. Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980, 2014.