• Title/Summary/Keyword: model-driven

Search Result 1,984, Processing Time 0.028 seconds

Characteristics of Skin Friction on Compression Loaded Group Piles (압축하중을 받는 무리말뚝의 주면지지력 특성)

  • Ahn Byung-Chul;Lee Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.95-100
    • /
    • 2004
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. And lately It is well grown that the high strength H-pile has been widely used f3r pile foundations. To compare the skin frictions of H piles under different density soil conditions, this paper presents results of a series of model tests on vertically loaded group piles. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements $(2\times2,\;3\tunes3)$, pile space(2D, 4D, 6D), and soil density$(D_r=40\%,\;80\%)$ were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that compression load for group piles increases as number of piles increase and piles space ratic decrease to $D_r=40\%$ of soil density. The analysis also found that the theoretical value of skin friction for group piles is greater than practical value as piles space ratio increases to $D_r=40\%$ of soil density. Piles showed the greatest difference of the skin friction in case that the pile space ratio(S/D) is 6. The theoretical value by Meyerhof and DM-7 showed 1.83 times and 1.32 times respectively as great as practical value in case of S/D=6 and $2\times2$.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Design and Implementation of Real-Time Parallel Engine for Discrete Event Wargame Simulation (이산사건 워게임 시뮬레이션을 위한 실시간 병렬 엔진의 설계 및 구현)

  • Kim, Jin-Soo;Kim, Dae-Seog;Kim, Jung-Guk;Ryu, Keun-Ho
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.111-122
    • /
    • 2003
  • Military wargame simulation models must support the HLA in order to facilitate interoperability with other simulations, and using parallel simulation engines offer efficiency in reducing system overhead generated by propelling interoperability. However, legacy military simulation model engines process events using sequential event-driven method. This is due to problems generated by parallel processing such as synchronous reference to global data domains. Additionally. using legacy simulation platforms result in insufficient utilization of multiple CPUs even if a multiple CPU system is under use. Therefore, in this paper, we propose conversing the simulation engine to an object model-based parallel simulation engine to ensure military wargame model's improved system processing capability, synchronous reference to global data domains, external simulation time processing, and the sequence of parallel-processed events during a crash recovery. The converted parallel simulation engine is designed and implemented to enable parallel execution on a multiple CPU system (SMP).

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

A Case Study on the Application of Visual merchandising (PBL) for Shop Manager (샵매니저를 위한 비주얼 머천다이징 수업에의 문제중심학습 (PBL) 적용 사례 연구)

  • Lee, Jisoo;Lee, Yoonjung;Noh, Hyekyun
    • Human Ecology Research
    • /
    • v.56 no.1
    • /
    • pp.71-84
    • /
    • 2018
  • This study presents a case of a visual merchandising course adopting a problem-based learning (PBL) model, as a part of shop manager training program for high school students. Various vocational training classes are actively developed for vocational high schools, yet programs in the home economics area are relatively lacking. In particular, education programs for shop manager training are urgently required due to the high demand of this job in the fashion industry. The PBL model, which reflects constructionist learning theory, is considered for this visual merchandising course in order to help develop the ability of students to creatively apply their knowledge on real-world problems through self-driven learning. For the purpose of job analysis, two problem areas were identified through interviews conducted with shop managers who work for apparel shops in department stores. Based on the results of the interviews, professors and high school teachers developed two PBL instructional modules. The developed module courses were implemented with 2 classes of vocational high school students. The learning outcome was examined through the analysis of a student survey and reflection journals. It was apparent that the PBL courses effectively attracted the interests of learners in vocational training and improved their understanding of the contents as well as cooperation skills. The results of this study indicate that implementing the PBL model for the training of store managers can contribute to the vocational training programs for high school students.

Multiphase Modeling on the Convective Transport of an Organic Solvent through Unsaturated Soils (비포화 토양층 내 유기 용매의 이류 이동에 대한 다상 모델링)

  • Lee Kun Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2004
  • In-situ photolysis is one of the most promising ways to clean up a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This study focuses on the mathematical description and model development of the convective upward transport of an organic solvent driven by evaporation and photodecomposition at the surface as the major transport mechanism in the clean up process. A finite-element-based numerical model was proposed to incorporate effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of van Genutchen equation for more accurate description of k-S-p relations. This paper presents results of extensive numerical calculations conducted to investigate the various parameters that play a role in the solvent migration through a laboratory-scale unsaturated soil column. The numerical results indicate that gravity affects significantly on the fluids distribution and evaporation for highly permeable soils. The soil texture has a profound influence on the fluid saturation profile during evaporation process. The amount of solvent convective motion increases with increasing evaporation rates and decreasing initial water saturation. Simulations conducted in this study have shown that the developed model is very useful in analyzing the effects of various parameters on the convective migration of an organic solvent in the soil environments.

Investigation on the Accuracy of bundle Adjustments and Exterior Orientation Parameter Estimation of Linear Pushbroom Sensor Models (선형 푸시브룸 센서모델의 번들조정 정확도 및 외부표정요소추정 정확도 분석)

  • Kim Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • In this paper, we investigate the accuracy of various sensor models developed for linear pushbroom satellite images. We define the accuracy of a sensor model in two aspects: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first accuracy has been analyzed and reported frequently whereas the second accuracy has somewhat been neglected. We argue that the second accuracy is as important as the first one. The second accuracy describes a model's ability to predict satellite orbit and attitude, which has many direct and indirect applications. Analysis was carried out on the traditional collinearity-based sensor models and orbit-based sensor models. Collinearity-based models were originally developed for aerial photos and modified for linear pushbroom-type satellite images. Orbit-based models have been used within satellite communities for satellite control and orbit determination. Models were tested with two Kompsat-1 EOC scenes and GPS-driven control points. Test results showed that orbit-based models produced better estimation of exterior orientation parameters while maintained comparable accuracy on bundle adjustments.

Examples of Holistic Good Practices in Promoting and Protecting Mental Health in the Workplace: Current and Future Challenges

  • Sivris, Kelly C.;Leka, Stavroula
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.295-304
    • /
    • 2015
  • Background: While attention has been paid to physical risks in the work environment and the promotion of individual employee health, mental health protection and promotion have received much less focus. Psychosocial risk management has not yet been fully incorporated in such efforts. This paper presents good practices in promoting mental health in the workplace in line with World Health Organization (WHO) guidance by identifying barriers, opportunities, and the way forward in this area. Methods: Semistructured interviews were conducted with 17 experts who were selected on the basis of their knowledge and expertise in relation to good practice identified tools. Interviewees were asked to evaluate the approaches on the basis of the WHO model for healthy workplaces. Results: The examples of good practice for Workplace Mental Health Promotion (WMHP) are in line with the principles and the five keys of the WHO model. They support the third objective of the WHO comprehensive mental health action plan 2013-2020 for multisectoral implementation of WMHP strategies. Examples of good practice include the engagement of all stakeholders and representatives, science-driven practice, dissemination of good practice, continual improvement, and evaluation. Actions to inform policies/legislation, promote education on psychosocial risks, and provide better evidence were suggested for higher WMHP success. Conclusion: The study identified commonalities in good practice approaches in different countries and stressed the importance of a strong policy and enforcement framework as well as organizational responsibility for WMHP. For progress to be achieved in this area, a holistic and multidisciplinary approach was unanimously suggested as a way to successful implementation.

A Case Study on the Target Sampling Inspection for Improving Outgoing Quality (타겟 샘플링 검사를 통한 출하품질 향상에 관한 사례 연구)

  • Kim, Junse;Lee, Changki;Kim, Kyungnam;Kim, Changwoo;Song, Hyemi;Ahn, Seoungsu;Oh, Jaewon;Jo, Hyunsang;Han, Sangseop
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.421-431
    • /
    • 2021
  • Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling

A Study on the Virtual Remote Input-Output Model for IoT Simulation Learning (IoT 시뮬레이션 학습을 위한 가상 리모트 입출력 모델에 관한 연구)

  • Seo, Hyeon-Ho;Kim, Jae-Woong;Kim, Dong-Hyun;Park, Seong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.45-53
    • /
    • 2021
  • In our technology-driven world, various methods for teaching in an educational venue or in a simulated environment have been suggested especially for computer and coding education. In particular, IoT related education has been made possible owing to the industrial developments that have occurred in various fields since the Fourth Industrial Revolution. The proposed model allows various IoT systems to be indirectly built; it provides an inexpensive learning method by applying a simulation system in a 3D environment. The model is implemented on Virtual Remote IO based on the Arduino platform, thereby reducing the cost of building an education system. In addition various education-related content can be provided to learners through such an indirectly developed system. Test code was written to check the consistency of an operation between the real system and the virtual system.