• Title/Summary/Keyword: model-driven

Search Result 1,984, Processing Time 0.024 seconds

Classes in Object-Oriented Modeling (UML): Further Understanding and Abstraction

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.139-150
    • /
    • 2021
  • Object orientation has become the predominant paradigm for conceptual modeling (e.g., UML), where the notions of class and object form the primitive building blocks of thought. Classes act as templates for objects that have attributes and methods (actions). The modeled systems are not even necessarily software systems: They can be human and artificial systems of many different kinds (e.g., teaching and learning systems). The UML class diagram is described as a central component of model-driven software development. It is the most common diagram in object-oriented models and used to model the static design view of a system. Objects both carry data and execute actions. According to some authorities in modeling, a certain degree of difficulty exists in understanding the semantics of these notions in UML class diagrams. Some researchers claim class diagrams have limited use for conceptual analysis and that they are best used for logical design. Performing conceptual analysis should not concern the ways facts are grouped into structures. Whether a fact will end up in the design as an attribute is not a conceptual issue. UML leads to drilling down into physical design details (e.g., private/public attributes, encapsulated operations, and navigating direction of an association). This paper is a venture to further the understanding of object-orientated concepts as exemplified in UML with the aim of developing a broad comprehension of conceptual modeling fundamentals. Thinging machine (TM) modeling is a new modeling language employed in such an undertaking. TM modeling interlaces structure (components) and actionality where actions infiltrate the attributes as much as the classes. Although space limitations affect some aspects of the class diagram, the concluding assessment of this study reveals the class description is a kind of shorthand for a richer sematic TM construct.

Prediction Model of Energy Consumption of Wired Access Networks using Machine Learning (기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델)

  • Suh, Yu-Hwa;Kim, Eun-Hoe
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2021
  • Green networking has become a issue to reduce energy wastes and CO2 emission by adding energy managing mechanism to wired data networks. Energy consumption of the overall wired data networks is driven by access networks, expect for end devices. However, on a global scale, it is more difficult to manage centrally energy, measure and model the real energy use and energy savings potential of the access networks. This paper presented the multiple linear regression model to predict energy consumption of wired access networks using supervised learning of machine learning with data collected by existing investigated materials, actual measured values and results of many models. In addition, this work optimized the performance of it by various experiments and predict energy consumption of wired access networks. The performance evaluation of the regression model was achieved by well-knowned evaluation metrics.

Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow (Sequence to Sequence based LSTM (LSTM-s2s)모형을 이용한 댐유입량 예측에 대한 연구)

  • Han, Heechan;Choi, Changhyun;Jung, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.157-166
    • /
    • 2021
  • Forecasting dam inflow based on high reliability is required for efficient dam operation. In this study, deep learning technique, which is one of the data-driven methods and has been used in many fields of research, was manipulated to predict the dam inflow. The Long Short-Term Memory deep learning with Sequence-to-Sequence model (LSTM-s2s), which provides high performance in predicting time-series data, was applied for forecasting inflow of Soyang River dam. Various statistical metrics or evaluation indicators, including correlation coefficient (CC), Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and error in peak value (PE), were used to evaluate the predictive performance of the model. The result of this study presented that the LSTM-s2s model showed high accuracy in the prediction of dam inflow and also provided good performance for runoff event based runoff prediction. It was found that the deep learning based approach could be used for efficient dam operation for water resource management during wet and dry seasons.

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

Predicting water temperature and water quality in a reservoir using a hybrid of mechanistic model and deep learning model (역학적 모델과 딥러닝 모델을 결합한 저수지 수온 및 수질 예측)

  • Sung Jin Kim;Se Woong Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.150-150
    • /
    • 2023
  • 기작기반의 역학적 모델과 자료기반의 딥러닝 모델은 수질예측에 다양하게 적용되고 있으나, 각각의 모델은 고유한 구조와 가정으로 인해 장·단점을 가지고 있다. 특히, 딥러닝 모델은 우수한 예측 성능에도 불구하고 훈련자료가 부족한 경우 오차와 과적합에 따른 분산(variance) 문제를 야기하며, 기작기반 모델과 달리 물리법칙이 결여된 예측 결과를 생산할 수 있다. 본 연구의 목적은 주요 상수원인 댐 저수지를 대상으로 수심별 수온과 탁도를 예측하기 위해 기작기반과 자료기반 모델의 장점을 융합한 PGDL(Process-Guided Deep Learninig) 모델을 개발하고, 물리적 법칙 만족도와 예측 성능을 평가하는데 있다. PGDL 모델 개발에 사용된 기작기반 및 자료기반 모델은 각각 CE-QUAL-W2와 순환 신경망 딥러닝 모델인 LSTM(Long Short-Term Memory) 모델이다. 각 모델은 2020년 1월부터 12월까지 소양강댐 댐 앞의 K-water 자동측정망 지점에서 실측한 수온과 탁도 자료를 이용하여 각각 보정하고 훈련하였다. 수온 및 탁도 예측을 위한 PGDL 모델의 주요 알고리즘은 LSTM 모델의 목적함수(또는 손실함수)에 실측값과 예측값의 오차항 이외에 역학적 모델의 에너지 및 질량 수지 항을 제약 조건에 추가하여 예측결과가 물리적 보존법칙을 만족하지 않는 경우 penalty를 부가하여 매개변수를 최적화시켰다. 또한, 자료 부족에 따른 LSTM 모델의 예측성능 저하 문제를 극복하기 위해 보정되지 않은 역학적 모델의 모의 결과를 모델의 훈련자료로 사용하는 pre-training 기법을 활용하여 실측자료 비율에 따른 모델의 예측성능을 평가하였다. 연구결과, PGDL 모델은 저수지 수온과 탁도 예측에 있어서 경계조건을 통한 에너지와 질량 변화와 저수지 내 수온 및 탁도 증감에 따른 공간적 에너지와 질량 변화의 일치도에 있어서 LSTM보다 우수하였다. 또한 역학적 모델 결과를 LSTM 모델의 훈련자료의 일부로 사용한 PGDL 모델은 적은 양의 실측자료를 사용하여도 CE-QUAL-W2와 LSTM 보다 우수한 예측 성능을 보였다. 연구결과는 다차원의 역학적 수리수질 모델과 자료기반 딥러닝 모델의 장점을 결합한 새로운 모델링 기술의 적용 가능성을 보여주며, 자료기반 모델의 훈련자료 부족에 따른 예측 성능 저하 문제를 극복하기 위해 역학적 모델이 유용하게 활용될 수 있음을 시사한다.

  • PDF

System Model-driven Conversion from PLC-based Systems to RTOS-based Systems (시스템 모델을 통한 PLC 기반 시스템의 RTOS 기반 시스템으로의 변환)

  • Kim, Je-Wung;Lim, Sung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.13-26
    • /
    • 2009
  • In this raper, We propose the alternative solution, RTOS-based system to replace the PLC 4hat has used the automation system for industrial processes. RTOS-based system is constructed the PC and RTOS as hardware and software. It overcomes the limit of PLC and guarantees the stability and reliability. Also, PC has better performance and cheaper than PLC when operating and constructing the system. For many manufactures, these benefits alone are all the reason they need to switch from PLC-based system to RTOS-based system. To use the RTOS-based System, the PLC program needs the conversion to the RTOS task. And how to transform is the most important issue. So, we propose conversion method through the system model. The system model defines the operation of each module as the task after the system divided into module. Because the system divided into modules can control, the performance and the functionality of system improve, and the system can deal with a problem easily when repairing and changing.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Research on the Direct-drive Wind Power Grid-connected System Based on the Back-to-back Double Closed-loop Full Control Strategy (연속 이중 폐쇄 루프 완전 제어 전략 기반 직접 구동 풍력 전력망 연결 시스템 연구)

  • Xian-Long Su;Han-Kil Kim;Kai Han;Hoe-Kyung Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.661-668
    • /
    • 2024
  • Based on the topology of the direct-drive permanent magnet synchronous wind power grid-connected system based on the power electronics full-power converter, the wind turbine model and the grid-side inverter model were studied, and the machine-side rectifier control based on current and speed double closed loops was designed. strategy, as well as a grid-side inverter control strategy based on current and voltage double closed loops, implementing a two-level back-to-back double closed-loop full control strategy. A system simulation model was built using Matlab/Simulink, and the operation of the unit was simulated when the wind speed changed step by step. The grid-connected current with the same phase and good sinusoidal nature of the grid voltage was output. The grid-connected system ran stably and efficiently. The simulation results The validity and rationality of the model, as well as the correctness and feasibility of the control strategy were verified.

Submarket Identification in Property Markets: Focusing on a Hedonic Price Model Improvement (부동산 하부시장 구획: 헤도닉 모형의 개선을 중심으로)

  • Lee, Chang Ro;Eum, Young Seob;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.405-422
    • /
    • 2014
  • Two important issues in hedonic model are to specify accurate model and delineate submarkets. While the former has experienced much improvement over recent decades, the latter has received relatively little attention. However, the accuracy of estimates from hedonic model will be necessarily reduced when the analysis does not adequately address market segmentation which can capture the spatial scale of price formation process in real estate. Placing emphasis on improvement of performance in hedonic model, this paper tried to segment real estate markets in Gangnam-gu and Jungrang-gu, which correspond to most heterogeneous and homogeneous ones respectively in 25 autonomous districts of Seoul. First, we calculated variable coefficients from mixed geographically weighted regression model (mixed GWR model) as input for clustering, since the coefficient from hedonic model can be interpreted as shadow price of attributes constituting real estate. After that, we developed a spatially constrained data-driven methodology to preserve spatial contiguity by utilizing the SKATER algorithm based on a minimum spanning tree. Finally, the performance of this method was verified by applying a multi-level model. We concluded that submarket does not exist in Jungrang-gu and five submarkets centered on arterial roads would be reasonable in Gangnam-gu. Urban infrastructure such as arterial roads has not been considered an important factor for delineating submarkets until now, but it was found empirically that they play a key role in market segmentation.

  • PDF