• Title/Summary/Keyword: model updating method

Search Result 304, Processing Time 0.019 seconds

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Model Updating Using Sensitivity of Frequency Response Function (주파수 응답함수의 감도를 이용한 모델개선법)

  • Kim, K.K.;Kim, Y.C.;Yang, B.S.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2000
  • It is well known that finite element analysis often has the inaccuracy when they are in conflict with test results. Model updating is concerned with the correction of analytical model by processing records of response from test results. This paper introduce a model updating technique using the frequency response function data. The measurement data is able to be used directly in the FRF sensitivity method because it is not necessary to identify. When a damping model is updated, it is necessary for the sensitivity matrix to be divided Into the complex part and real part. As an applying model, a cantilever and a rotor system are used. Specially the machined clearance($C_p$) of the journal bearing is updated.

  • PDF

Progressive damage detection of thin plate structures using wavelet finite element model updating

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.277-290
    • /
    • 2018
  • In this paper, wavelet finite element model (WFEM) updating technique is employed to detect sub-element damage in thin plate structures progressively. The procedure of WFEM-based detection method, which can detect sub-element damage gradually, is established. This method involves the optimization of an objective function that combines frequencies and modal assurance criteria (MAC). During the damage detection process, the scales of wavelet elements in the concerned regions are adaptively enhanced or reduced to remain compatible with the gradually identified damage scenarios, while the modal properties from the tests remains the same, i.e., no measurement point replacement or addition are needed. Numerical and experimental examples were conducted to examine the effectiveness of the proposed method. A scanning Doppler laser vibrometer system was employed to measure the plate mode shapes in the experimental study. The results indicate that the proposed method can detect structural damage with satisfactory accuracy by using minimal degrees-of-freedoms (DOFs) in the model and minimal updating parameters in optimization.

Generating Korean synthetic populations by using the iterative proportional updating method (Iterative Proportional Updating 방법을 이용한 한국 가상 인구 데이터 생성)

  • Son, Woo-Sik;Kwon, Okyu;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2016
  • Microsimulation model has aimed to simulate the impact of policy at the level of individual and household. Recently, microsimulation model has been widely accepted in OECD countries for evaluating their economic and social policies. For improving the availability of microsimulation model, the population data which shows good accordance with the official statistics should be required. In this paper, we generate Korean synthetic populations by using the iterative proportional updating method. For the validation of Korean synthetic populations, we compute the difference between the generated synthetic populations and the summary table of Korean census. Then, we confirm that it shows good accordance with the summary table.

Damage Detection Using Finite Element Model Updating (유한요소 모델 개선기법을 이용한 손상추정)

  • Min, Cheon-Hong;Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a damage detection method that uses sensitivity-based finite (FE) element model updating with the natural frequency and zero frequency was proposed. The stiffness matrix for a structure was modified using the sensitivity-based FE model updating method. A sensitivity analysis was used to update the FE model, and the natural frequencies and zero frequencies were considered as target parameters to supplement the information on the vibration characteristics. The locations and values of the damages were estimated from the modified stiffness matrix. Several numerical examples were considered to verify the performance of the proposed method.

Research about Pipe Analysis Model Updating by Using OMA Method (OMA기법을 활용한 가동배관의 해석모델 교정에 관한 연구)

  • Yi, Yonggeun;Jeong, Minki;Kang, Deokshin;Kong, busung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.485-485
    • /
    • 2014
  • 배관 가동시 여러 지점에서 가속도를 측정, 이를 이용하여 배관의 어느 부위에 stress가 많이 걸리는지 해석적으로 확인하기 위한 연구이다. 먼저, 배관 설계시 사용된 CEASER II의 정보를 기반으로 해석 모델을 만들었다. 해석 모델을 바탕으로 측정 포인트를 산정한 후, 가동 중인 배관의 가속도를 측정하였다. 측정된 가속도 data를 OMA(Operational Modal Analysis) method를 이용하여 Mode shape 및 Frequency를 추출한 후 이를 바탕으로 배관의 FE 모델을 Updating 하였다. Updating 된 배관 FE 모델에 측정된 가속도 data가 나오도록 Force를 가해 배관에 걸리는 stress를 계산하였다.

  • PDF

A Study on the F.E. Model Updating and Optimization for Vehicle Subframe (차량 서브프레임의 유한요소 모델의 개선 및 최적화에 대한 연구)

  • 허덕재;이근수;홍석윤;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • This paper describes an integrated approach process to carry out pre-test, model correlation and updating analysis on the sub-frame of a vehicle. In this study, it was found that the modal test could be more efficient when the exciting point was selected on the area with high driving point residue. Such area could be located with the aid of finite element modal analysis. The model correlation was appraised in conjunction with the modal parameters between modal test and finite elements analysis. Also, the finite element model updating was obtained the good resultant using the iteration method based on sensitivity analysis results that carried out the variation of natural frequencies and MAC for the material properties. Finally, optimization of vehicle subframe was carried out the analysis of core location and physical properties by tow steps.

On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks (운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • This paper presents an on-line finite element model updating method for in-service structures using measured data. Conventional updating methods, which are based on numerical optimization, are not efficient for on-line updating because they generally require repeated eigenvalue analyses until convergence criteria are met. The proposed method enables fully automated on-line finite element model updating, almost simultaneously with vibration measurement, without any user intervention or off-line procedures. The automated covariance-driven stochastic subspace identification (Cov-SSI) method is utilized to identify modal frequencies and vectors, and the identified modal data is fed to the neural network of the inverse eigenvalue function to produce the updated finite element model parameters. Numerical examples for a wind excited 20-story building structure shows that the proposed method can update the series of finite element model parameters automatically. It is also shown that sudden changes in the structural parameters can be detected and traced successfully.