• Title/Summary/Keyword: model reduction technique

Search Result 491, Processing Time 0.03 seconds

Sensitivity-based finite element model updating with natural frequencies and zero frequencies for damped beam structures

  • Min, Cheon-Hong;Hong, Sup;Park, Soo-Yong;Park, Dong-Cheon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.904-921
    • /
    • 2014
  • The main objective of this paper is to propose a new Finite Element (FE) model updating technique for damped beam structures. The present method consists of a FE model updating, a Degree of Freedom (DOF) reduction method and a damping matrix identification method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using the natural frequencies and the zero frequencies is introduced. Second, an Iterated Improved Reduced System (IIRS) technique is employed to reduce the number of DOF of FE model. Third, a damping matrix is estimated using modal damping ratios identified by a curve-fitting method and modified matrices which are obtained through the model updating and the DOF reduction. The proposed FE model updating method is verified using a real cantilever beam attached damping material on one side. The updated result shows that the proposed method can lead to accurate model updating of damped structures.

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.

A novel hybrid testing approach for piping systems of industrial plants

  • Bursi, Oreste S.;Abbiati, Giuseppe;Reza, Md S.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1005-1030
    • /
    • 2014
  • The need for assessing dynamic response of typical industrial piping systems subjected to seismic loading motivated the authors to apply model reduction techniques to experimental dynamic substructuring. Initially, a better insight into the dynamic response of the emulated system was provided by means of the principal component analysis. The clear understanding of reduction basis requirements paved the way for the implementation of a number of model reduction techniques aimed at extending the applicability range of the hybrid testing technique beyond its traditional scope. Therefore, several hybrid simulations were performed on a typical full-scale industrial piping system endowed with a number of critical components, like elbows, Tee joints and bolted flange joints, ranging from operational to collapse limit states. Then, the favourable performance of the L-Stable Real-Time compatible time integrator and an effective delay compensation method were also checked throughout the testing campaign. Finally, several aspects of the piping performance were commented and conclusions drawn.

Reduced Order Identification and Stability Analysis of DC-DC Converters

  • Ali, Husan;Zheng, Xiancheng;Wu, Xiaohua;Zaman, Haider;Khan, Shahbaz
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.453-463
    • /
    • 2017
  • This paper discusses the measurement of frequency response functions for various dc-dc converters. The frequency domain identification procedure is applied to the measured frequency responses. The identified transfer functions are primarily used in developing behavioral models for dc-dc converters. Distributed power systems are based upon such converters in cascade, parallel and several other configurations. The system level analysis of a complete system becomes complex when the identified transfer functions are of high order. Therefore, a certain technique needs to be applied for order reduction of the identified transfer functions. During the process of order reduction, it has to be ensured that the system retains the dynamics of the full order system. The technique used here is based on the Hankel singular values of a system. A systematic procedure is given to retain the maximum energy states for the reduced order model. A dynamic analysis is performed for behavioral models based on full and reduced order frequency responses. The close agreement of results validates the effectiveness of the model order reduction. Stability is the key design objective for any system designer. Therefore, the measured frequency responses at the interface of the source and load are also used to predict stability of the system.

Water Balance Estimate of LID Technique for Circulating Urban Design (순환형 도시계획에 따른 LID기술의 물수지 분석)

  • Kang, Sung-Hee;Heo, Woo-Myung;Kang, Sang-Hyeok
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1065-1073
    • /
    • 2015
  • Urbanization can be significantly affected the hydrologic cycle by increasing flood discharge and heat flux. In order to mitigate these modifications in urban areas, Low Impact Development (LID) technique has been designed and applied in Korea. In order to estimate runoff reduction rate using SWMM LID model, the characteristics of five LID techniques was firstly analyzed for water balance. Vegetated swale and green roof were not reduce flood discharge nor infiltration amount. On the other hand, porous pavement and infiltration trench were captured by infiltration function. The flood reduction rate with LID is substantially affected by their structures and properties, e.g., the percentage of the area installed with LID components and the percentage of the drainage area of the LID components.

A Study on the Intelligent Load Management System Based on Queue with Diffusion Markov Process Model (확산 Markov 프로세스 모델을 이용한 Queueing System 기반 지능 부하관리에 관한 연구)

  • Kim, Kyung-Dong;Kim, Seok-Hyun;Lee, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.891-897
    • /
    • 2009
  • This paper presents a novel load management technique that can lower the peak demand caused by package airconditioner loads in large apartment complex. An intelligent hierarchical load management system composed of a Central Intelligent Management System(CIMS) and multiple Local Intelligent Management Systems(LIMS) is proposed to implement the proposed technique. Once the required amount of the power reduction is set, CIMS issues tokens, which can be used by each LIMS as a right to turn on the airconditioner. CIMS creates and maintains a queue for fair and proper allocation of the tokens among the LIMS requesting tokens. By adjusting the number tokens and queue management policies, desired power reduction can be achieved smoothly. The Markov Birth and Death process and the Balance Equations utilizing the Diffusion Model are employed for evaluation of queue performances during transient periods until the static balances among the states are achieved. The proposed technique is tested using a summer load data of a large apartment complex and give promising results demonstrating the usability in load management while minimizing the customer inconveniences.

A Study on The Vibration Reduction of 2-D Ring Model of Vehicle Compartment (2차원 차실 링모델의 진동저감에 관한 연구)

  • Yoo, Sun Jae;Kim, Seock Hyun
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.21-32
    • /
    • 1990
  • Car body resonance often generates severe vibrational and noise problems in vehicle compartment. In this study, vibrational characteristics of 2-D vehicle compartment model is investigated and structural modification is carried out by numerical simulation to shift natural frequencies and to reduce stresses in resonance. To this end, ring models of the compartment are manufactured and analysed by FEA. The results are verified to be in good agreement with those of experimental modal testing. And the results of this study offer efficient strucural modification technique for vibration reduction of real cars.

  • PDF

Model Reduction using Stochastical Balance Technique (확률론적 Balance 방법을 이용한 제어용 모델의 축소)

  • Lee, Dong-Hee;Kwon, Dong-Chul;Yeo, Un-Kyung;Park, Sung-Man;Chae, Kyo-Soon;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.988-992
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is exposed to various types of disturbance. Thus designing controller for those dynamic system under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(Balanced Model Reduction) method is applied to moment equation in stochastic domain and reliable reduced order system model has been obtained.

  • PDF

Model Reduction Using Stochastic Balance Technique (확률론적 발란스 방법을 이용한 제어용 모델의 축소)

  • Lee, Dong-Hee;Park, Sung-Man;Lee, Jong-Bok;Chae, Kyo-Soon;Yeo, Un-Kyung;Heo, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is normally exposed to various types of disturbance. Thus designing controller for these dynamic systems under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(balance model reduction) method is adopted and applied to moment equation in stochastic domain. Reliable reduced order system model has been obtained.

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.