• Title/Summary/Keyword: model perturbation

Search Result 461, Processing Time 0.023 seconds

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber (예혼합실을 갖는 연소-노즐 시스템의 음향장 해석)

  • Yoon, Myunggon;Kim, Jina;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-53
    • /
    • 2017
  • This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

DISCRETE MODEL REDUCTION OVER DISC-TYPE ANALYTIC DOMAINS AND $\infty$-NORM ERROR BOUND

  • Oh, Do-Chang;Lee, Kap-Rai;Um, Tae-Ho;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.64-68
    • /
    • 1996
  • In this note, we propose the discrete model reduction method over disc-type analytic domains. We define Hankel singular value over the disc that is mapped by standard bilinear mapping. And GSPA(generalized singular perturbation approximation) and DT(direct truncation) are generalized to GSPA and DT over a disc. Furthermore we show that the reduced order model over a smaller domain has a smaller L$_{\infty}$ norm error bound..

  • PDF

A Numerical Study on Quantification of Combustion-Response Parameters of Impinging-Jet Injectors using Time-Lag Model (시간지연 모델을 이용한 충돌형 분사기의 연소응답 인자 도출 및 정량화에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Chul Jin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.5-7
    • /
    • 2012
  • This study presents relations between the time lag and interaction index of the impinging-jet injectors using time lag model in a model chamber. To analyze the response of the flame, 5% amplitude of oxidizer velocity is artificially perturbed at a resonance frequency. At the mixing point of fuel and oxidizer, which determines the characteristic length, the relationship between velocity perturbation and heat release rate is quantified by combustion parameters of interaction index and time lag. As the improved method to apply the time-lag, the method using the average velocity obtained from numerical results is suggested.

  • PDF

Multiprocess Discount Survival Models With Survival Times

  • Shim, Joo-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 1997
  • For the analysis of survival data including covariates whose effects vary in time, the multiprocess discount survival model is proposed. The parameter vector modeling the time-varying effects of covariates is to vary between time intervals and its evolution between time intervals depends on the perturbation of the next time interval. The recursive estimation of the parameter vector can be obtained at the end of each time interval. The retrospective estimation of the survival function and the forecasting of the survival function of individuals of the specific covariates also can be obtained based on the information gathered until the end of the time interval.

  • PDF

A Nonlinear Theory for the Lotka-Volterra Model with an External lnput

  • Mino Yang;Sangyoub Lee;Seong Keun Kim;Kook Joe Shin;Moon Hee Ryu;Song Hi Lee;Dong J. Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.560-565
    • /
    • 1992
  • A new perturbation theory called the star expansion method is used to obtain an approximate nonlinear solution of the Lotka-Volterra model under the influence of some kinds of external input. The effects of nonlinearity, amplitude and frequency of the external input on the chemical oscillations in the model are evaluated by taking specific values for the model parameters, and the results are discussed in detail.

Numerical Nonlinear Stability of Traveling Waves for a Chemotaxis Model

  • Min-Gi Lee
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • We study the stability of traveling waves of a certain chemotaxis model. The traveling wave solution is a central object of study in a chemotaxis model. Kim et al. [8] introduced a model on a population and nutrient densities based on a nonlinear diffusion law. They proved the existence of traveling waves for the one dimensional Cauchy problem. Existence theory for traveling waves is typically followed by stability analysis because any traveling waves that are not robust against a small perturbation would have little physical significance. We conduct a numerical nonlinear stability for a few relevant instances of traveling waves shown to exist in [8]. Results against absolute additive noises and relative additive noises are presented.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

Natural frequency characteristics of composite plates with random properties

  • Salim, S.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.659-671
    • /
    • 1998
  • Exercise of complete control on all aspects of any manufacturing / fabrication process is very difficult, leading to uncertainties in the material properties and geometric dimensions of structural components. This is especially true for laminated composites because of the large number of parameters associated with its fabrication. When the basic parameters like elastic modulus, density and Poisson's ratio are random, the derived response characteristics such as deflections, natural frequencies, buckling loads, stresses and strains are also random, being functions of the basic random system parameters. In this study the basic elastic properties of a composite lamina are assumed to be independent random variables. Perturbation formulation is used to model the random parameters assuming the dispersions small compared to the mean values. The system equations are analyzed to obtain the mean and the variance of the plate natural frequencies. Several application problems of free vibration analysis of composite plates, employing the proposed method are discussed. The analysis indicates that, at times it may be important to include the effect of randomness in material properties of composite laminates.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF