DOI QR코드

DOI QR Code

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber

예혼합실을 갖는 연소-노즐 시스템의 음향장 해석

  • Yoon, Myunggon (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University) ;
  • Kim, Jina (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University) ;
  • Kim, Daesik (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University)
  • Received : 2017.02.06
  • Accepted : 2017.06.30
  • Published : 2017.10.01

Abstract

This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

본 논문은 "예혼합실+노즐+연소실"의 3단으로 구성된 예혼합 가스터빈 연소기의 열음향모델을 제시한다. 음향장의 동적특성은 화염섭동을 입력으로 화염면에서의 속도를 출력으로 하는 음향전달함수로 표현되었다. 음향전달함수의 극점들을 분석함으로서 음향장의 공진주파수는 각 단 사이의 면적비, 그리고 음향파가 각 단을 왕복 운동하는 3개 주파수들의 조합으로 주어짐을 보였다. 극점을 나타내는 함수의 형태를 분석하여 3단 연소기의 여러 파라미터가 변함에 따라서 공진주파수가 어떻게 변하는가에 대하여 해석적으로 분석하였고 문헌의 실험결과와 일치함을 확인하였다.

Keywords

References

  1. Kim, K.T. and Santavicca, D., "Linear Stability Analysis of Acoustically Driven Pressure Oscillations in a Lean Premixed Gas Turbine Combustor," Journal of Mechanical Science and Technology, Vol. 23, No. 12, pp. 3436-3447, 2009. https://doi.org/10.1007/s12206-009-0924-0
  2. Kim, D.S. and Kim, K.T., "Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 32-40, 2012. https://doi.org/10.6108/KSPE.2012.16.6.032
  3. Kim, J.A. and Kim, D.S., "Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor," Journal of ILASS-Korea, Vol. 20, No. 4, pp. 241-246, 2015. https://doi.org/10.15435/JILASSKR.2015.20.4.241
  4. Kim, J.A., Yoon, M.G. and Kim, D.S., "Combustion Stability Analysis Using Feedback Transfer Function," Journal of the Korean Society of Combustion, Vo. 21, No. 3, pp. 24-31, 2016. https://doi.org/10.15231/jksc.2016.21.3.024
  5. Lieuwen, T.C. and Yang, V., Combustion Instabilities in Gas Turbine Engines, AIAA, Reston, V.A., U.S.A., 2005.
  6. Palies, P., Durox, D., Schuller, T. and Candel, S., "Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames," Combustion and Flame, Vol. 158, No. 10, pp. 1980-1991, 2011. https://doi.org/10.1016/j.combustflame.2011.02.012
  7. Schuller, T., Durox, D., Palies, P. and Candel, S., "Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems," Combustion and Flame, Vol. 159, No. 5, pp. 1921-1931, 2012. https://doi.org/10.1016/j.combustflame.2012.01.010
  8. Silva, C.F., Nicoud, F., Schuller, T., Durox, D. and Candel, S., "Combining a Helmholtz Solver with the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor," Combustion and Flame, Vol. 160, No. 9, pp. 1743-1754, 2013. https://doi.org/10.1016/j.combustflame.2013.03.020