• Title/Summary/Keyword: model perturbation

Search Result 462, Processing Time 0.031 seconds

Bending Waves Propagating in a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보에서 전파하는 굽힘 탄성파)

  • Kim, Jin-O;Mun, Byeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1923-1930
    • /
    • 2000
  • A bar with periodically nonuniform material properties is selected as a one-dimensional model of a flat-panel speaker. This paper describes a theoretical approach to the bending waves propagating i n the nonuniform bar. The phase speed of the wave is obtained using perturbation techniques for small amplitude, sinusoidal modulation of the flexural rigidity and mass density. It is shown that the wave speed is decreased due to the nonuniformity of the material properties by the amount proportional to the square of the modulation amplitude. The resonance occurring when the wavelength is half of the period of the material properties is analyzed by the method of multiple scales. It is also shown that the wave speed at the resonance mode is decreased by the amount proportional to the modulation amplitude but the wave of this mode does not propagate far enough due to attenuation.

Speed of Bending Wales Propagating in a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보에서 굽힘 탄성파의 전파속도)

  • Kim, Jin-Oh;Moon, Byung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.573-578
    • /
    • 2000
  • A bar with periodically nonuniform material properties is selected as a one-dimensional model of a flat-panel speaker. This paper describes a theoretical approach to the bending waves propagating in the nonuniform bar. The phase speed of the wave is obtained using perturbation techniques for small amplitude, sinusoidal modulation of the flexural rigidity and mass density. It is shown that the wave speed is decreased due to the nonuniformity of the material properties by the amount proportional to the square of the modulation amplitude.

  • PDF

Characteristics of Perturbations in Recent Length of Day and Polar Motion

  • Na, Sung-Ho;Kwak, Younghee;Cho, Jung-Ho;Yoo, Sung-Moon;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Various features of the existing perturbations in the Earth's spin rotation are investigated for the recent and most reliable data by spectral analysis, filtering, and comparison with idealized model. First, theory of Earth's spin rotational perturbation is briefly re-derived in the Earth-fixed coordinate frame. By spectral windowings, different periodic components of the length of day perturbation are separated, and their characters and excitations are discussed. Different periodic components of polar motion are acquired similarly and described with further discussion of their excitations. Causes of the long time trends of both the length of day and polar motion are discussed. Three possible causes are considered for the newly discovered 490-day period component in the polar motion.

Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control (개선된 슬라이딩 모드제어기를 이용한 스튜워트플렛폼의 추종제어)

  • 김낙인;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.166-175
    • /
    • 2001
  • The high speed tracking control of a 6-6 Stewart platform manipulator (SPM) normally requires knowledge of its complex full dynamics and measurement of its base motion when the SPM operates on a motion nit. In this study, an enhanced sliding mode control scheme has been developed, which is based on the reduced dynamics, not necessitating measurement of the base motion. The enhanced sliding mode control implemented with the perturbation compensation and modified reaching phase alleviation functions has been successfully employed for high speed tacking control of the laboratory SPM, when it is subjected to a virtual base motion.

  • PDF

Small Small Signal Stability Anslysis by AMEP for Controller Parameter (제어기정수에 대한 AMEP와 대규모 전력계통에 미소신호안정도 해석)

  • Shim, K.S.;Song, S.G.;Nam, H.K.;Kim, Y.G.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.112-115
    • /
    • 2001
  • Eigenvalue perturbation theory of augmented system matrix(AMEP) is a useful tool in the analysis and design of large scale power systems. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. AMEP for interarea and local mode can be used for turning controller parameter, and verifying system data and linear model of controller.

  • PDF

Uniformly Convergent Numerical Method for Singularly Perturbed Convection-Diffusion Problems

  • Turuna, Derartu Ayansa;Woldaregay, Mesfin Mekuria;Duressa, Gemechis File
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.629-645
    • /
    • 2020
  • A uniformly convergent numerical method is developed for solving singularly perturbed 1-D parabolic convection-diffusion problems. The developed method applies a non-standard finite difference method for the spatial derivative discretization and uses the implicit Runge-Kutta method for the semi-discrete scheme. The convergence of the method is analyzed, and it is shown to be first order convergent. To validate the applicability of the proposed method two model examples are considered and solved for different perturbation parameters and mesh sizes. The numerical and experimental results agree well with the theoretical findings.

Parametrically excited viscoelastic beam-spring systems: nonlinear dynamics and stability

  • Ghayesh, Mergen H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.705-718
    • /
    • 2011
  • The aim of the investigation described in this paper is to study the nonlinear parametric vibrations and stability of a simply-supported viscoelastic beam with an intra-span spring. Taking into account a time-dependent tension inside the beam as the main source of parametric excitations, as well as employing a two-parameter rheological model, the equations of motion are derived using Newton's second law of motion. These equations are then solved via a perturbation technique which yields approximate analytical expressions for the frequency-response curves. Regarding the main parametric resonance case, the local stability of limit cycles is analyzed. Moreover, some numerical examples are provided in the last section.

Singular Value Decomposition Approach to Observability Analysis of GPS/INS

  • Hong, Sin-Pyo;Chun, Ho-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.133-138
    • /
    • 2006
  • Singular value decomposition (SDV) approach is applied to the observability analysis of GPS/INS in this paper. A measure of observability for a subspace is introduced. It indicates the minimum size of perturbation in the information matrix that makes the subspace unobservable. It is shown that the measure has direct connections with observability of systems, error covariance, and singular structure of the information matrix. The observability measure given in this paper is applicable to the multi-input/multi-output time-varying systems. An example on the observability analysis of GPS/INS is given. The measure of observability is confirmed to be less sensitive to system model perturbation. It is also shown that the estimation error for the vertical component of gyro bias can be considered unobservable for small initial error covariance for a constant velocity horizontal motion.

  • PDF

A Study on Unsteady Responses of Flames - Calculation of Flame Transfer Function in a Subscale Combustor (화염의 비정상 응답 특성 연구-화염 전달 함수 산출)

  • Sohn, Chae Hoon;Guillaume, Jourdain;Kim, Young Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.107-108
    • /
    • 2015
  • The acoustic optimization of a swirl coaxial jet injector mounted upstream a combustion chamber is investigated to tackle combustion instabilities. The least damped modes are extracted with the help of the dynamic mode decomposition (DMD). The sensitivity of the heat release perturbation to the velocity perturbation for the second longitudinal mode is investigated by combining the Crocco's equation and the inhomogeneous wave equation and computing the flame transfer function (FTF). DMD and FTF results agree in terms of the optimized injector length.

  • PDF

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.