• Title/Summary/Keyword: model input uncertainty

Search Result 273, Processing Time 0.03 seconds

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm (토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계)

  • 최형식;박재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

Adaptive Control with Antiwindup Scheme for Relaxed Static Stability(RSS) Missiles with Saturating Actuator

  • Kim, Young-Hwan;Chwa, Dong-Kyung;Im, Ki-Hong;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.4-54
    • /
    • 2001
  • This paper proposes an adaptive control scheme for an autopilot design of Relaxed-Static-Stability(RSS) Missiles with saturating actuator. The feedback linearization controller eliminates nonlinear terms in RSS missile dynamics and makes the entire system linear. But modeling errors, disturbances and the nonlinear mismatch due to input constraints exert a bad influence on the performance of the feedback linearization controller Thus, first, we derive a parametric affine uncertainty model with modeling errors and disturbances. Then an adaptive control law with anti-windup scheme is developed, where the bounds of uncertainties are estimated with adaptive laws. The proposed adaptive controller can remove the bad effects of uncertainties, of disturbances, and of saturating actuator ...

  • PDF

Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data (자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구)

  • Yoon, Heesung;Kim, Yongcheol;Ha, Kyoochul;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • For the effective management of groundwater resources, it is necessary to predict groundwater level fluctuations in response to rainfall events. In the present study, time series models using artificial neural networks (ANNs) and support vector machines (SVMs) have been developed and applied to groundwater level data from the Gasan, Shingwang, and Cheongseong stations of the National Groundwater Monitoring Network. We designed four types of model according to input structure and compared their performances. The results show that the rainfall input model is not effective, especially for the prediction of groundwater recession behavior; however, the rainfall-groundwater input model is effective for the entire prediction stage, yielding a high model accuracy. Recursive prediction models were also effective, yielding correlation coefficients of 0.75-0.95 with observed values. The prediction errors were highest for Shingwang station, where the cross-correlation coefficient is lowest among the stations. Overall, the model performance of SVM models was slightly higher than that of ANN models for all cases. Assessment of the model parameter uncertainty of the recursive prediction models, using the ratio of errors in the validation stage to that in the calibration stage, showed that the range of the ratio is much narrower for the SVM models than for the ANN models, which implies that the SVM models are more stable and effective for the present case studies.

Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment (설마천유역 혼효림에서 실측된 증발산과 토양수분을 이용한 SWAT모형의 적용성 평가)

  • Joh, Hyung-Kyung;Lee, Ji-Wan;Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Common practice of Soil Water Assessment Tool (SWAT) model validation is to use a single variable (i.e., streamlfow) to calibrate SWAT model due to the paucity of actual hydrological measurement data in Korea. This approach, however, often causes errors in the simulated results because of numerous sources of uncertainty and complexity of SWAT model. We employed multi-variables (i.e., streamflow, evapotranspiration, and soil moisture), which were measured at mixed forest in Seolmacheon catchment ($8.54\;km^2$), in order to assess the performance and reduce the uncertainties of SWAT model output. Meteorological and surface topographical data of the catchment were obtained as basic input variables and SWAT model was calibrated using daily data of streamflow (Jan. - Dec.), evapotranspiration (Sep. - Dec.), and soil moisture (Jun. - Dec.) collected in 2007. The model performance was assessed by comparing its results with the observation (i.e., streamflow of 2003 to 2008 and evapotranspiration and soil moisture of 2008). When the multi-variable measurements were used to calibrate the SWAT model, the model results showed better agreement with the measurements compared to those using a single variable measurement by showing increases in coefficient of determination ($R^2$) from 0.72 to 0.76 for streamflow, from 0.49 to 0.59 for soil moisture, and from 0.52 to 0.59 for evapotranspiration. The findings highlight the importance of reliable and accurate collective observation data for improving performance of SWAT model and promote its facilitation for estimating more realistic hydrological cycles at catchment scale.

A Study on the Robust Compensator of An Inverted Pendulum Using $H_{\infty}$ Optimal Control Theory ($H_{\infty}$ 최적제어 이론을 이용한 도립진자의 견실한 보상기 설계에 관한 연구)

  • 김대현;정규홍;이석재;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.213-218
    • /
    • 1991
  • A new model which contains the dynamics of the motor system and the kinematics of the timing belt system is derived for an inverted pendulum system in FAPA Lab. Generalized standard compensator configuration(SCC) which contains the variable design parameters Kl, K2, .., K5 is proposed so that any desired design specification can be achieved. The robust controller which has robust property against the influence of sensor noise, system parameter variation and model uncertainty is designed minimizing the H$_{\infty}$-norm of transfer function from exogenous input to controlled output. The method of solving the two Riccati equations in state space and determining the controller uses on iteration method where the unique stabilizing solution to two algebraic Riccati equation must be positive definite and the spectral radius of their product less than .gamma.$^{2}$. Some cases are derived by varying the design parameter for simulation on a digital computer and experimenting the H$_{\infty}$- controller on an analog computer. The design parameters of controller which satisfies the desired control specification is selected on the basis of the simulation result and experimenting. The reasonableness and validity of the simulation and the robustness of the controller is established.d.

  • PDF

Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study

  • Ni, Yi-Qing;Wang, Junfang;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.337-362
    • /
    • 2015
  • This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Schematic Estimation Process using Architectural Object BIM Library

  • Lee, Ji Yong;Kim, In Han;Choi, Jung Sik
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.289-293
    • /
    • 2015
  • The construction industry has been evolving with the development of information technology. According to this trend, the current industry changes from 2d drawings to Building Information Modeling(BIM). Current studies on the BIM-based estimation have problems such as Quantity Take-Off(QTO) specificity toward a particular software, the uncertainty of the amount in accordance with the model quality. These studies focus on QTO based on BIM rather than schematic estimation. In addition, studies on the connection with the QTO and unit cost for schematic estimation are insufficient. The purpose of this study is to propose schematic estimation process by utilizing construction codes and QTO in architectural object BIM libraries. Construction codes are classified in detail in order to input codes inside each. This study has connected unit cost and construction classification codes that obtain from BIM model. The results of this study will be helpful in decision-making and communication for schematic estimation of the design phase. It will improve the efficiency and reliability problems of existing schematic estimation.

  • PDF