• Title/Summary/Keyword: model factor

Search Result 11,931, Processing Time 0.034 seconds

A UCP-based Model to Estimate the Software Development Cost (소프트웨어 개발 비용을 추정하기 위한 사용사례 점수 기반 모델)

  • Park, Ju-Seok;Chong, Ki-Won
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.163-172
    • /
    • 2004
  • In the software development project applying object-oriented development methodology, the research on the UCP(Use Case Point) as a method to estimate development effort is being carried on. The existing research proposes the linear model calculating the development effort that multiplies an invariant on AUCP(Adjusted Use Case Point) which applied technical and environmental factors. However, the statistical model that estimates the development effort using AUCP and UUCP(Unadjusted Use Case Point) is not being studied. The irrelevant relationship of the linear regression model, whose development period is increasing tremendously as the software size increases, is confirmed. Moreover, during the UCP calculating process, there can be errors in FP by applying the TCF(Technical Complexity Factor) and EF(Environmental Factor). This paper presents a non-linear regression model, that does not consider the TCF and EF, and that estimate the development effort from UUCP directly by utilizing the exponential function. An exponential function is selected among the linear, logarithm, polynomial, power, and exponential model via statistical evaluations of the models mentioned above.

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

K-factor Prediction in Import and Export Cargo Trucks-Concentrated Expressways by Short-Term VDS Data (단기 VDS자료로 수출입화물트럭이 집중하는 고속도로의 K-factor 추정에 관한 연구)

  • Kim, Tae-Gon;Heo, In-Seok;Jeon, Jae-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Gyeongbu and Namhae expressways in the country, are the major arterial highways which are connected with the Busan port in the north-south and east-west directions, respectively, and required to study the traffic characteristics about the hourly volume factors(K-factor) by concentrated midium-size and large-size cargo trucks of 20% or higher in expressways. We therefore attempted to predict the K-factor in expressways through the correlation analysis between K-factor and K-factor estimates on the basis of the short-term VDS data collected at the basic segments of the above major expressways. As a result, power model appeared to be appropriate in predicting K-factor by the K-factor estimate based on VDS data for 7 days with a high explanatory power and validity.

Unbiasedness or Statistical Efficiency: Comparison between One-stage Tobit of MLE and Two-step Tobit of OLS

  • Park, Sun-Young
    • International Journal of Human Ecology
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2003
  • This paper tried to construct statistical and econometric models on the basis of economic theory in order to discuss the issue of statistical efficiency and unbiasedness including the sample selection bias correcting problem. Comparative analytical tool were one stage Tobit of Maximum Likelihood estimation and Heckman's two-step Tobit of Ordinary Least Squares. The results showed that the adequacy of model for the analysis on demand and choice, we believe that there is no big difference in explanatory variables between the first selection model and the second linear probability model. Since the Lambda, the self- selectivity correction factor, in the Type II Tobit is not statistically significant, there is no self-selectivity in the Type II Tobit model, indicating that Type I Tobit model would give us better explanation in the demand for and choice which is less complicated statistical method rather than type II model.

A Viscoelastic Constitutive Model of Rubber Under Small Oscillatory Loads Superimposed on Large static Deformation (정적 대변형에 중첩된 미소 동적 하중을 받는 고무재료의 점탄성 구성방식에 관한 연구)

  • Kim, Bong-Gyu;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.619-628
    • /
    • 2001
  • A viscoelastic constitutive equation of rubber is proposed under small oscillatory load superimposed on large static deformation. The proposed model is derived through linearization of Simos nonlinear viscoelastic constitutive model and reference configuration transformation. Statically pre-deformed state is used as reference configuration. The model is extended to a generalized viscoelastic constitutive equation including widely-used Mormans model. Static deformation correction factor is introduced to consider the influence of pre-strain on the relaxation function. The model is tested for dynamic behavior of rubbers with different carbon black fractions. It is shown that the constitutive equation with static deformation correction factor agrees well with test results.

Attitude toward the Website for Apparel Shopping (Part I): Measurement Model Testing (의류 쇼핑 웹사이트 태도 형성 모델 연구 (제1보) -웹사이트 속성, 웹사이트 쇼핑가치, 웹사이트 태도 측정모형 검증-)

  • 홍희숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1482-1494
    • /
    • 2004
  • This study identified convergent validity and discriminant validity of measurement variables by factor analysis using Spss program and tested covariance measurement model including latent variables such as the website attributes (interactivity, search and visual information of website), shopping values(utilitarian and hedonic value) and attitude toward website by AMOS program. The data were collected from a sample of 271 internet shopper of university students(male: 82, female: 189). They visited the website for apparel shopping and, after searching a casual clothing which they wanted to buy, requested to answer the questionnaire. The results were as follows: Variables that reduce validity were deleted in the several steps of factor analysis and initial measurement model testing. Final measurement model was constructed by valid variables was accepted. This measurement model will be input for testing causal research model that can explain how attributes of the website influences on consumer attitude toward the website.

Sampling Based Approach to Bayesian Analysis of Binary Regression Model with Incomplete Data

  • Chung, Young-Shik
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.493-505
    • /
    • 1997
  • The analysis of binary data appears to many areas such as statistics, biometrics and econometrics. In many cases, data are often collected in which some observations are incomplete. Assume that the missing covariates are missing at random and the responses are completely observed. A method to Bayesian analysis of the binary regression model with incomplete data is presented. In particular, the desired marginal posterior moments of regression parameter are obtained using Meterpolis algorithm (Metropolis et al. 1953) within Gibbs sampler (Gelfand and Smith, 1990). Also, we compare logit model with probit model using Bayes factor which is approximated by importance sampling method. One example is presented.

  • PDF

Comparison of accuracy between LC model and 4-PFM when COVID-19 impacts mortality structure

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.233-250
    • /
    • 2021
  • This paper studies if the accuracies of mortality models (LC model vs. 4-parametric model) are aggravated if a mortality structure changes due to the impact of COVID-19. LC model (LCM) uses dimension reduction for fitting to the log mortality matrix so that the performance of the dimension reduction method may not be good when the matrix structure changes. On the other hand, 4-parametric factor model (4-PFM) is designed to use factors for fitting to log mortality data by age groups so that it would be less affected by the change of the mortality structure. In fact, the forecast accuracies of LCM are better than those of 4-PFM when life-tables are used whereas those of 4-PFM are better when the mortality structure changes. Thus this result shows that 4-PFM is more reliable in performance to the structural changes of the mortality. To support the accuracy changes of LCM the functional aspect is explained by computing eigenvalues produced by singular vector decomposition

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

Predictive Modeling of the Growth and Survival of Listeria monocytogenes Using a Response Surface Model

  • Jin, Sung-Sik;Jin, Yong-Guo;Yoon, Ki-Sun;Woo, Gun-Jo;Hwang, In-Gyun;Bahk, Gyung-Jin;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.715-720
    • /
    • 2006
  • This study was performed to develop a predictive model for the growth kinetics of Listeria monocytogenes in tryptic soy broth (TSB) using a response surface model with a combination of potassium lactate (PL), temperature, and pH. The growth parameters, specific growth rate (SGR), and lag time (LT) were obtained by fitting the data into the Gompertz equation and showed high fitness with a correlation coefficient of $R^2{\geq}0.9192$. The polynomial model was identified as an appropriate secondary model for SGR and LT based on the coefficient of determination for the developed model ($R^2\;=\;0.97$ for SGR and $R^2\;=\;0.86$ for LT). The induced values that were calculated using the developed secondary model indicated that the growth kinetics of L. monocytogenes were dependent on storage temperature, pH, and PL. Finally, the predicted model was validated using statistical indicators, such as coefficient of determination, mean square error, bias factor, and accuracy factor. Validation of the model demonstrates that the overall prediction agreed well with the observed data. However, the model developed for SGR showed better predictive ability than the model developed for LT, which can be seen from its statistical validation indices, with the exception of the bias factor ($B_f$ was 0.6 for SGR and 0.97 for LT).