Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.
A response surface model was developed for predicting the growth rates of Staphylococcus aureus in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10, 20, 30, and $40^{\circ}C$. In all experimental variables, the primary growth curves were well ($r^2=0.9000$ to 0.9975) fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. aureus were generally decreased by basic (pH 9-10) or acidic (pH 5-6) conditions and higher NaCl concentrations. The response surface model was identified as an appropriate secondary model for growth rates on the basis of correlation coefficient (r=0.9703), determination coefficient ($r^2=0.9415$), mean square error (MSE=0.0185), bias factor ($B_f=1.0216$), and accuracy factor ($A_f=1.2583$). Therefore, the developed secondary model proved reliable for predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. aureus in TSB medium.
A dynamic model was developed to predict the Escherichia coli cell counts in pig trotters at changing temperatures. Five-strain mixture of pathogenic E. coli at 4 Log CFU/g were inoculated to cooked pig trotter samples. The samples were stored at 10℃, 20℃, and 25℃. The cell count data was analyzed with the Baranyi model to compute the maximum specific growth rate (μmax) (Log CFU/g/h) and lag phase duration (LPD) (h). The kinetic parameters were analyzed using a polynomial equation, and a dynamic model was developed using the kinetic models. The model performance was evaluated using the accuracy factor (Af), bias factor (Bf), and root mean square error (RMSE). E. coli cell counts increased (p<0.05) in pig trotter samples at all storage temperatures (10℃-25℃). LPD decreased (p<0.05) and μmax increased (p<0.05) as storage temperature increased. In addition, the value of h0 was similar at 10℃ and 20℃, implying that the physiological state was similar between 10℃ and 20℃. The secondary models used were appropriate to evaluate the effect of storage temperature on LPD and μmax. The developed kinetic models showed good performance with RMSE of 0.618, Bf of 1.02, and Af of 1.08. Also, performance of the dynamic model was appropriate. Thus, the developed dynamic model in this study can be applied to describe the kinetic behavior of E. coli in cooked pig trotters during storage.
Wearable computers can be defined as next generation clothing integrated with various digital functions and devices. Unlike existing computers, they are viewed as human-centric computers customized for information utilization and other specific human needs. This study is intended to discover how consumers are accepting wearable computers, which are different from existing computers, based on Technology Acceptance Model(TAM) and to extend the model by adding variable regarding acceptance of wearable computers. A total of 683 copies of questionnaires, distributed to those aged 19 and older, both male and female, were collected online. The data was statistically analyzed for this study using the extended TAM. In order to test hypotheses, the structural equation model using the Lisrel 8.30 version was performed. For analyzing constructs(or traits) of research model, exploratory factor was conducted and the measurement model was assessed from the result. Reliability was assessed through confirmatory factor analysis and the calculation of Cronbach's alpha coefficients. Overall, model fit was assessed by statistical indexes: Chi-square value, GFI, AGFI, and RMR. This study analyzed the process of acceptance of wearable computers with the extended TAM that includes a variable, perceived value, on the basis of previous studies. The results of the analysis revealed that attitude toward wearable computer was directly influenced by perceived usefulness and perceived value but indirectly influenced by perceived ease of use. Acceptance intention of the wearable computer was directly influenced by perceived value and attitude toward wearable computer. To be more specific, perceived usefulness was significantly correlated with both attitude toward wearable computer and acceptance intention of the wearable computer. Perceived value was also significantly correlated with both attitude toward wearable computer and acceptance intention of the wearable computer. The results of this study also suggested that perceived ease of use was actually a causal antecedent to perceived usefulness and perceived value. This research revealed that extended TAM to investigate the acceptance of wearable computer was appropriate. This study is intended to provide a theoretical framework for adoption of wearable computer and suggest empirical analysis that can serve as a guide for wearable computer.
KIPS Transactions on Software and Data Engineering
/
v.7
no.4
/
pp.129-134
/
2018
Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.
The purpose of this study Is to develop empirically validated instrument for business model. The previous researches related to business model were almost taxonomies. And the focus of those researches were the classification by the degree of integration and innovation the origin, and the main source of revenue etc. In the emerging fields such as IT, e-commerce, and e-business, it tends to overlook methodological issue in its substantive relationships and also measurement. Business model is taken an interest in recent years. However, as the non-establishment of construct on business model has made no empirical study, this, study tries to develop an empirical validated instrument that identifies the dimensions of business model by uncovering meaningful group or categories. For this, the outlined domain of business model are defined as an organizational level that competes in the industry through the literature reviews. And the traits such as process integration, value chain reconstruction, strategic alliance with another business model, specialty in a certain wet sustainability of essential capabilities, differentiation, convertibility, customer orientation, revenue stream, newness, innovation leadership: and vision sharing are identified in those respective domains, and then the traits are classified into five dimensions such as interlinkageableness, valueness, functionalness, preemptiveness, and goalness by their characteristics. Generating items are continued on the basis of operationalization. Confirmatory factor analysis is performed in order to develop validated instrument with LISREL measurement model. Finally the instrument is developed through the previous procedure. The implication of this study is the first empirical effort to assess business model. The resulting instrument can be used with dependent variables in the future study related to business model. And the establishment of construct of business model is able to make a basis to rise an additional issue consequently. In the practical side, the instrument also can be employed as an assessment framework that can assess whether the expected value success or not. The instrument with the measurement can be used on competitor's business model, In. When an investment into a i-m with a specific business model, these instrument developed can be presented as the basic framework of assessment.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.3194-3210
/
2022
Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.
Park, Jin-Kyu;Han, Hee-Jeong;Mun, Jeong-Eon;Yang, Chan-Su;Ahn, Yu-Hwan
Proceedings of KOSOMES biannual meeting
/
2006.11a
/
pp.181-186
/
2006
Geostationary Orbit satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with everyone hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. However, Sun-synchronous polar-orbit satellites able to take a picture of target region same time a everyday. Thus Ocean signal is almost same. Accordingly, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite-sun-target points. This relative ratio called bidirectional factor. To find relationship between time and $[L_w]_N$/Bidirectional Factor differences, we are calculate solar position, geometry parameters. And reflectance, total radiance at the top of atmosphere(). And water leaving radiance, normalized water leaving radiance. And calculate bidirectional factor, that is the ratio of $[L_w]_N$ between target region and aiming the point. Then, we can make the bidirectional factor lookup table for one year imaging. So, we suggested for necessary to simulation experiment bidirectional factor in more various condition(wavelength and ocean/air condition).
The study of the validity test on the self-monitoring scale for nurses In this study, both the literary survey as well as empirical research has been executed to test the validity of the scales that measure the construct of the self-monitoring scale. The self-monitoring scale could not be classified into five factors as Snyder suggested. Many other scholars (Briggs, Cheek and Buss, 1980) suggested 3 different classifications which was accepted by Snyder and Gangestad (1986). John, Cheek and Klohnen(1996) claimed a two-factor classification. As has been discussed, factor analysis is used to prove convergent validity within the factor and discriminant validity between the factors. However, depending on the researchers, many variations in classification of the factors were found and a lack of content and discriminant validity were found in the previous research findings. It is also important to note that Snyder's self-monitoring scale did not factor-load at over. 30 for all 25 items, regardless of how many factors could be classified. According to findings of this study, the self-monitoring scale neither classified as five, three or two factors nor factor loaded as hypothesized. It is also clear that Snyder's self-monitoring scale lacks convergent validity as the sub-factors of the scale failed to prove its uni-dimensionality. The A self-monit oring scale not only fail to overcome the problems of Snyder's self-monitori ng scale but even lost the attractiveness of the self-monitoring scale. In this study it was also found that the A self-monitoring scale was not classified in either in a two or three-factor classification as hypothesized. It is, of course, not desirable to use any scale that lacks convergent and discriminant validity even though it has been widely used and has held a great deal of influence on the field of social psychology. To overcome the shortcomings of Snyder's self-monitoring scale, Lennox and Wolfe(1984) suggested 13 items. This study was dedicated to test the validity and reliability of the scale, in which we found that the data presented in validity as the two factors were class ified and loaded as expected. Reliability was also proven by checking Cronbach's α for each factor and for the total items. In addition, a confirmatory factor analysis was executed for the 13 items using LISREL 8.12 program to confirm convergent validity in a two-factor classification. The model was fitting and sound : however, the self-monitoring scale was unfitted and not validated. Thus, it is recommended to use not the original nor the abbreviated self-monitoring scale but the 13 items in future studies. It should also be noted that items 7 and 13 should be removed to obtain better uni-dimensionality for the 13 items. These items loaded at over. 30, too high for the two factors in the test results of Factor analysis. In addition, it is necessary to double-check the cause of two-hold loading at over .30 for the two factors. It could be a problem caused by data or by the scale itself. Therefore, additional studies should follow to better clarify this matter.
In this study, both the literary survey as well as empirical research has been executed to test the validity of the scales that measure the construct of self-monitoring scale could not be classified into five factors as Snyder suggested. Many other scholars (Briggs, Cheek and Buss, 1980) suggested 3 different classifications which was accepted by Snyder and Gangestad (1986). John, Cheek and Klohnen (1996) claimed a two-factor classification. As has been discussed, factor analysis is used to prove convergent validity within the factor and discriminant validity between the factors. However, depending on the researchers, many variations in classification of the factors were found and a lack of content and discriminant validity was found in the previous research findings. It is also important to note that Snyder's self-monitoring scale, did not factor-load at over 30 for all 25 items, regardless of how many factors could be classified. According to findings of this study, the self-monitoring scale neither classified as five, three or two factors nor factor loaded as hypothesized. It is also clear that Snyder's self-monitoring scale lack convergent validity as the sub-factors of the scale fail to prove its uni-dimensionality. The A self-monitoring scale not only fail to overcome the problems of Snyder's self-monitoring scale but even lost the attractiveness of the self-monitoring scale. In this study, it was also found that the A self-monitoring scale was not classified as hypothesized in either in a two or three-factor classification. It is, of course, not desirable to use any scale that lacks convergent and discriminant validity even though it has been widely used but also has held a great deal of influence on the field of social psychology. To overcome the shortcomings of Snyder's self-monitoring scale, Lennox and Wolfe(1984) suggested 13 items. This study 1. was dedicated to test the validity and reliability of the scale, in which we found that the data presented in validity as the two factors were classified and loaded as expected. Reliability was also proven by checking Cronbach's alpha for each factor and for the total items. In addition, a confirmatory factor analysis was executed for the 13 items using LISREL 8.12 program to confirm convergent validity in a two-factor classification. The model was fitting and sound ; however, the self-monitoring scale was unfitted and not validated. Thus, it is recommended to use not the original or the abbreviated self-monitoring scale but the 13 items in future studies. It should also be noted that items 7 and 13 should be removed to obtain better uni-dimensionality for the 13 items. These items loaded at over .30, too high for the two factors in the test results of factor analysis. In addition, it is necessary to double-check the cause of two-hold loading at over .30 for the two factors. It could be a problem caused by data or by the scale itself. Therefore, additional studies should follow to better clarify this matter.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.