• Title/Summary/Keyword: model driven development

Search Result 422, Processing Time 0.023 seconds

Development and Implementation of Real Time Multibody Vehicle Dynamics Model (실시간 다물체 차량 동역학 모델 개발 및 구현)

  • O, Yeong-Seok;Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.834-840
    • /
    • 2001
  • A real time multibody vehicle dynamics model has been developed and implemented using a subsystem synthesis method based on recursive formulation. To verify real time simulation capability the developed model has been applied to HMMWV(High Mobility Multipurpose Wheeled Vehicle) with steering system. For the kinematically driven steering system, the coupled front suspension-steering subsystem can be decoupled into two SLA suspension subsystems, which improves the efficiency of simulation. To investigate theoretical efficiency, operational counting method has been also employed to compare the proposed model with the conventional recursive dynamics model. Various simulations such as unsymmetric bump run, step steering(J-turn) and sine steering input test have been carried out to verify the real time feasibility of the proposed model.

A genetic approach to comprehend the complex and dynamic event of floral development: a review

  • Jatindra Nath Mohanty;Swayamprabha Sahoo;Puspanjali Mishra
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.40.1-40.8
    • /
    • 2022
  • The concepts of phylogeny and floral genetics play a crucial role in understanding the origin and diversification of flowers in angiosperms. Angiosperms evolved a great diversity of ways to display their flowers for reproductive success with variations in floral color, size, shape, scent, arrangements, and flowering time. The various innovations in floral forms and the aggregation of flowers into different kinds of inflorescences have driven new ecological adaptations, speciation, and angiosperm diversification. Evolutionary developmental biology seeks to uncover the developmental and genetic basis underlying morphological diversification. Advances in the developmental genetics of floral display have provided a foundation for insights into the genetic basis of floral and inflorescence evolution. A number of regulatory genes controlling floral and inflorescence development have been identified in model plants such as Arabidopsis thaliana and Antirrhinum majus using forward genetics, and conserved functions of many of these genes across diverse non-model species have been revealed by reverse genetics. Transcription factors are vital elements in systems that play crucial roles in linked gene expression in the evolution and development of flowers. Therefore, we review the sex-linked genes, mostly transcription factors, associated with the complex and dynamic event of floral development and briefly discuss the sex-linked genes that have been characterized through next-generation sequencing.

A Study on the Development of Frameworks for Outcomes Measurement of Reading Programs for Children in a Public Library (공공도서관 어린이 독서프로그램의 성과 측정을 위한 프레임워크 개발에 관한 연구)

  • Park, Sung Jae;Han, Sang Woo
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • The purpose of this study is to develop frameworks for evaluating reading programs for children provided by a public library. Logic Model based on outcome evaluations was applied for the framework development. While the logic model is generally composed of six factors, the frameworks developed in this study has four factors including input, activity, output, and outcome. Additionally, this study suggests outcome indicators which were driven from library data. Even though the evaluation frameworks were developed from specific programs operated by a public library, those might be able to be used to evaluate other libraries' programs for children since the target programs are commonly provided by public libraries.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Knowledge-guided artificial intelligence technologies for decoding complex multiomics interactions in cells

  • Lee, Dohoon;Kim, Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.239-249
    • /
    • 2022
  • Cells survive and proliferate through complex interactions among diverse molecules across multiomics layers. Conventional experimental approaches for identifying these interactions have built a firm foundation for molecular biology, but their scalability is gradually becoming inadequate compared to the rapid accumulation of multiomics data measured by high-throughput technologies. Therefore, the need for data-driven computational modeling of interactions within cells has been highlighted in recent years. The complexity of multiomics interactions is primarily due to their nonlinearity. That is, their accurate modeling requires intricate conditional dependencies, synergies, or antagonisms between considered genes or proteins, which retard experimental validations. Artificial intelligence (AI) technologies, including deep learning models, are optimal choices for handling complex nonlinear relationships between features that are scalable and produce large amounts of data. Thus, they have great potential for modeling multiomics interactions. Although there exist many AI-driven models for computational biology applications, relatively few explicitly incorporate the prior knowledge within model architectures or training procedures. Such guidance of models by domain knowledge will greatly reduce the amount of data needed to train models and constrain their vast expressive powers to focus on the biologically relevant space. Therefore, it can enhance a model's interpretability, reduce spurious interactions, and prove its validity and utility. Thus, to facilitate further development of knowledge-guided AI technologies for the modeling of multiomics interactions, here we review representative bioinformatics applications of deep learning models for multiomics interactions developed to date by categorizing them by guidance mode.

Modeling of an isolated intersection using Petri Network

  • 김성호
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.49-64
    • /
    • 1994
  • The development of a mathematical modular framework based on Petri Network theory to model a traffic network is the subject of this paper. Traffic intersections are the primitive elements of a transportation network and are characterized as event driven and asynchronous systems. Petri network have been utilized to model these discrete event systems; further analysis of their structure can reveal information relevant to the concurrency, parallelism, synchronization, and deadlock avoidance issuse. The Petri-net based model of a generic traffic junction is presented. These modular networks are effective in synchronizing their components and can be used for modeling purposes of an asynchronous large scale transportation system. The derived model is suitable for simulations on a multiprocessor computer since its program execution safety is secured. The software pseudocode for simulating a transportation network model on a multiprocessor system is presented.

  • PDF

"3+3 PROCESS" FOR SAFETY CRITICAL SOFTWARE FOR I&C SYSTEM IN NUCLEAR POWER PLANTS

  • Jung, Jae-Cheon;Chang, Hoon-Sun;Kim, Hang-Bae
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.91-98
    • /
    • 2009
  • The "3+3 Process" for safety critical software for nuclear power plants' I&C (Instrumentation and Control system) has been developed in this work. The main idea of the "3+3 Process" is both to simplify the software development and safety analysis in three steps to fulfill the requirements of a software safety plan [1]. The "3-Step" software development process consists of formal modeling and simulation, automated code generation and coverage analysis between the model and the generated source codes. The "3-Step" safety analysis consists of HAZOP (hazard and operability analysis), FTA (fault tree analysis), and DV (design validation). Put together, these steps are called the "3+3 Process". This scheme of development and safety analysis minimizes the V&V work while increasing the safety and reliability of the software product. For assessment of this process, validation has been done through prototyping of the SDS (safety shut-down system) #1 for PHWR (Pressurized Heavy Water Reactor).

A New Approach to Motion Modeling and Autopilot Design of Skid-To-Turn Missiles

  • Chanho Song;Kim, Yoon-Sik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • In this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic cross-couplings and nonlinearities with angle of attack. The model of missile motion is derived in the maneuver plane and, based on that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerodynamic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates. Besides the outputs, further information such as Mach number, dynamic pressure, total angle of attack, and bank angle is required. With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that the induced moments and some aerodynamic nonlinearities are properly compensated and that the performance is superior to that of the conventional ones.

Starategy for Advanced Decision Supprot System Development for Integrated Management of Water Resources and Quality (수자원 수질 종합관리를 위한 ADSS 개발 전략)

  • 심순보
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.443-447
    • /
    • 1992
  • This study describes the strategy for advanced decision support system (ADSS) development for integrated management of water resources and quality in reservoir systems. The developed ADSS consists of database that contain hydrologic data, observed operational data, and data to support specific reservoir operations simulation, optimization models, and water quality models. The optimization model, mass balance simulation model and water quality models are used in a general prototype ADSS, menu driven controlling framework that assists the user to specify and evaluate the alternative operational scenarios at one time. These alternative scenarios are evaluated by the models and the results are compared through the use of a graphical based display system. This graphical based system uses an icon based schematic representation of the system to organize the presentation of the results. The ADSS includes the ability to use monthly or weekly time periods of analysis for the models and it can use monthly historical or stochastically generated inflows.

  • PDF