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A New Approach to Motion Modeling and Autopilot Design of
Skid-To-Turn Missiles

Chanho Song, Yoon-Sik Kim

Abstract: Tn this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic
cross-couplings and nonlinearities with angle of attack. The model of missile motjon is derived in the maneuver plane and, based on
that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerody-
namic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates.
Besides the outputs, forther information such as Mach number, dynamic pressure, totat angle of attack, and bank angle is required.
With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that
the induced moments and some acrodynamic nonlinearities are properly compensated and that the performance is superior to that of

the conventional ones.
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I. Introduction

In general, autopilots for STT(Skid-To-Turn) missiles are
designed based on the assumption that cross-couplings among
roll, pitch, and yaw channels are negligible.[1] However, this
assumption is valid if the system works at low angle of attack.
There may be large aerodynamic couplings among these
channels due to the bank angle which varies with the target
maneuver. This acrodynamic coupling comprises a dynamic
interchannel coupling mode, and the maintenance of stability
becomes increasingly more difficult as missile angle of attack
is increased. Among strategies used so far to reduce these
coupling effects, the following two ones seem to be prevalent.
The one is to limit, to some extent, the total angle of attack
because the aerodynamic couplings and nonlinearities increase
with the angle of attack, and the other is to select smaller
bandwidths of pitch and yaw loops than that of the roll loop.
However, these methods are not optimal solutions because the
former limits the maneuverability and the latter can make the
response of the pitch(or yaw) loop sluggish.[2]

Not only the design methodology but also the structure of
the autopilot is worth noting. Tn case that the missile configu-
ration is symmetric cruciform, the structure of yaw autopilot is
usually made to be the same as the pitch autopilot, but with
this structure it is difficult to take the so-called induced yaw-
ing force and moment into consideration in the autopilot de-
sign. As well known, even if the configuration of airframe has
symmetry, the air flow about the maneuver plane may be
asymmetric, and such undesired forces and moments can be
induced in the direction perpendicular to the maneuver plane.
Another aspect of common pitch (or yaw) autopilots is that
control parameters are not implemented as a function of angle
of attack, though aerodynamics may be heavily nonlinear with
the angle of attack, especially for the highly maneuverable
missiles.

In this paper, we present a new approach to autopilot design
for STT missiles which may have severe aerodynamic cross-
couplings and nonlinearities with angle of attack. First, we
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derive the missile motion model where the aerodynamic char-
acteristics of STT missiles are well delineated. Based on this
model, we design pitch, yaw, and roll autopilot which are
composed of a nonlinear term which compensates for the
aerodynamic couplings and nonlinearities and a linear control-
ler driven by the measured outputs of missile accelerations and
angular rates. Besides the outputs, the proposed autopilot re-
quires further information such as Mach number, dynamic
pressure, total angle of attack, and bank angle. Among those,
the first two parameters are used for the gain-scheduling, and
the rest for the compensation of couplings and nonlinearities.
In case that bank angle and angle of attack are not measurable,
which commonly happens in practice, estimators ought to be
designed. With the proposed autopilot and simple estimators
of bank angle and total angle of attack, it is shown by com-
puter simulations that the induced moments and some aerody-
namic nonlinearities are properly compensated and that the
performance is superior to that of the conventional ones.

II. Coordinate frames

In this section, we define several coordinate frames neces-
sary for the motion modeling. Let X, .Y, and Z, be the
reference axes of the missile body frame as in Fig. 1. Denoting
the transformation matrix to the rotation about i axis,
i=x,y,7 through the angle8 by [@], then the maneuver
frame 1s defined as the one transformed from the body frame
by [-T],, where T is the bank angle. Rotating again the
maneuver frame about the Y axis through the total angle of
attack, —a, we get the wind frame. The X axis of the wind
frame comes into coincidence with the missile velocity vector.

X,
aQ
Y. Z
Ay =~
/’
/4
Zo Ve Xw

Fig. 1. liustration of coordinate systems.
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Let ¥¢, V™ and V" be a vector represented in the body,
maneuver, and wind coordinates, respectively. Then the rela-
tionship between the frames can be depicted as follows :

A A
[Ty [~y

We introduce another notation C,.f for the transformation
matrix from the i frame to the j frame,

1 0 0
C) =[-T],=|0 cr -ST (1)
0 SI Cr
Ca, 0 Se,
Cl=[-a],=| 0 1 0 2
-Sa, 0 Ce,
Ca, SasST SalT
Cy=C)Cl=| 0 cr -ST (3)

-Sa, CaST Calr

where S and C are the abbreviations of sine and cosine,
respectively.

II1. Modeling for the cruciform missiles
In this section, we derive the motion model of the cruciform
missiles. The following somewhat standard assumptions are
used in the derivation.
Assumption 1 : The effect of gravity is neglected.
Assumption 2 : Thrust force is exhausted and velocity and
mass of the missile are constant.
Assumption 3 : Contributions of the main wing and control
fins to the moment of inertia and product of
inertia are negligible.
Assumption 1 and 2 mean that there are no applied forces to
the missile but the aerodynamic forces.
We now set up the force equations in the wind frame. From
the standard results (for example, [3]), force equations can be
expressed as follows:

F =mU, +qW, -rV.) )
F,=my, +rU,-pW) (5)
F =mW,+pV,-qU,) (6)

where m is the missile mass and subscript w represents that
W,, V, and W, are

w

coordinates. In the wind frame, V.

w3

all zero, and U, is equal to the total velocity, V., so we get

V, = (F,,cosa, +F,,sina,)/m @)
r, =F,, (mV) ®)
q,=—-(-F,sina, +F_ cosa,)/(mV,) S

In the above equations, subscript m represents the maneuver
coordinates. Since the missile velocity is assumed to be con-
stant in Assumption 2, Eq. (7) is meaningless.

Before deriving the moment equations, we further introduce a
notation ¢, which means the angular rate of the k frame with
respect to the inertial frame 7 represented in the / frame. With
the notation, we have

Pn P |-T p,~T
O =490 (=G| s [+] 0 |=]| @CT —1,ST (10)
r, A 0 q,ST +r,CT
P, P 0 p,Ca, +1,5¢,
@, = 4, |=Cp| 4 |F|—C | = q9,-¢, )]
r, " 0 -p.Sa, +r,.Ca,

Then, from Egs. (9) and (10),
&, =4, —4, =4, +(-F,sing, + F, cosa)/(mV))  (12)
Furthermore, from Egs. (8), (10), and (11),
T'=p,—p, =p, +(r,—r, cosa,)/sing,
=p, +(F,

m

(13)

(mV,)—r, cosa,)/sina,

When 7™ is the inertia dyadic in the maneuver frame, let

x Xy Xx:
I"=\-1, I, -~I,
—_I,rz _‘I)YZ Iz

Then, it follows from Assumption 3 that /™ is constant re-
gardless of T, ["=[", I =1, and [ ,=I_=1_=0.
Denoting the moment applied to the missile in the maneuver
coordinates as M"™ then we have from reference {4, 51,

M"=C'M'=Cy g—(cjnlmwjg =Cr(CLI ol + CLIm o)
¢
=Cr(CLQn Il + Cl Q)

where Q" is the skew symmetry matrix of a vector @, , i€,

im m 7

0 - 4, Pn
Q=7 0 -p,| for o =g,
~Gu Pu 0 -
p,+T
Since @) =@ +@), =| ¢, | and p,+I =p, from Eq.
rm
(13),
I, 0 05, 0 -r, 94,1 0 O}p,
M <|0 1, Ollg |+ rn O -p, |0 1, 04,
OOIyQ—qmmeOOI:rm
Lp,
=| 4,4, +Lr,p, ~ L (P, ~ D)1,y
LF, = 14,0, + (P, ~1)d, | _
Let M"=(M_,,M ., M,) . Then we finally get

R 1
pb:’“M

7 Mo (14
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. 1 I .

4, =—M,, ——=r.p,+(p,~D)r, (15)
I,v Iy

o1 I, :

rm :I_Mzm ——I_qmpb + (pb _r)qm (16)
z ¥y

Now we formulate the applied moment and force terms, that is

(ForFpsF) and (M, M M_ ), so that they can be
used effectively in autopilot design. It is well known that
aerodynamic forces and moments are functions of bank angle
I, total angle of attack ¢, , Mach number, #, dynamic pres-
sure, O, and control fin deflections. Consider the control fin
deflections (5,,0,,6,) in the maneuver coordinates trans-
formed from the body coordinates (6,,6,,6,) via the trans-
formation

ym?3

(sp 6}(
s |=cris, a7
5‘7 52

We shall use (6,,0,,6,) instead of the actual fin deflec-
tions (c?_r,dy,é'z). Now, based on the available aerodynamic
data, we make another assumption.

Assumption 4 : The control cross-couplings of (5,.5,,6,)
are negligible.
Furthermore, contributions of the fin deflec-
tions (5,,5,,6,) and the missile main body
to the aerodynamics are decomposed.

With this assumption, aerodynamic forces and moments can
be written as follows.

£, =05C.(n,a,.T,6,,6),

C =C,na,IN+C,(ne,T,6,5)
F,,=05C (na,T,35,)

C, =C,na,0)+C,ne,T,6,)
F,=08C,(n,a,T,6,)

C,=C,na,1+C,(n,a,T,6) (18)

d
M., =08d(C,(n 2, T,8,) +-Cyp,)
C =Cy(na,D)+Cy(n,a,,T,8,)

d
M, =054, (nea,T, 5q)+WCmqqm)

Cm = CmO(n’ az’ r) + le(n’ at’ r> §q)

Mzm = QSd(CIx(n’ az’ F’ 5r) +%Cnrrm)

t

Cn = CnO(n’ a/’ r) + Cnl(n’ at’ r’ é‘r)

where C,,i=x,y,z,1,m n are the nondimensional stability
derivatives, and C,,C, , and C, are the damping coeffi-
cients which are functions of Mach number, and S and d are
the missile reference area and length, respectively. Summariz-
ing the equations derived so far, we end up with

oX)

a,=q, +—(—C sing, + C_ cosa,) 19)
mV.

I":pb +(Q—£Cy —r,cosq,)/sing, (20)
m i
. Sd 1 .
4, =24, Mg, Lo p, (0T, @)
I}’ I.V
. Sd 1 .
=20 N+ g p (0D, QD)
, Sd
P = QI—CI +L,p, (23)
2 2 2
where M = o5d o> NV, = o5d C,,andL = o5d C,.
oy 21V Py *

yie v x"e

IV. Autopilot design

In this section, we present a design technique for the pitch,
yaw, and roll autopilot based on the above motion model.
Autopilot design for cruciform missile typically have been
based on the use of three independent channel for pitch, yaw
and roll, and each channel are fixed in body frame. Actuator
command also determined in the frame using the body angular
rates and normal accelerations. But in this paper, the maneuver
in X-Z plane and in X-Y plane of the maneuver frame will be
defined as the pitch motion and the yaw motion, respectively.
The rotational motion about the X, axis is defined to be the
roll motion as usual. Now, we assume that missile accelera-
tions and angular rates, Mach number and height are measur-
able. The design goal is to make missile follow the accelera-
tion commands quickly and accurately.
1. Pitch and yaw autopilots

Assuming p, =0 and neglecting two terms, C sing,
and 7, (p-T), from the Eqs. (19) and (21), we get

. os
a,0q,+ m—VCZ

m

s (24)
=gy + 2 (Cotn @, 1) +Co(,2,,T, 6,)
4, =L (Cln @, D+ (1,0, T8 ) + Mg, ©9)

For the cruciform missiles, C,, can be expressed in terms
of f, and f, which are functions of Mach number and total

angle of attack as follows[6];

C,o = fi(n,a)+ f,(n,0,)cos 4T (26)

Now, we further simplify the aerodynamic model so that it
can be used more effectively in autopilot design.
Assumption5: €, and C, are not affected by I' and

linearto &, and &, respectively.
Assumption 6 : C.g. and c.p. are located on the center line of
the missile body, i.c., on the X axis of the
body frame.
By Assumption 5, C,, can be written as

C..=fi(n,2,)6, . @n
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Furthermore, Assumption 6 leads C , and C to the

same form as Eqs. (26) and (27), respectively, ie., for the
certain functions g,, g, and g,

C..=gno)+ g,(na,)cosd4l’ (28)

C, = &,(na,)8, (29)

Denoting the static margin, i.e., the distance from c.g. to ¢.p.

as [ and the distance from c.g. to the control fin position as
[_then the following equations hold :
1 l 1
g1:;ﬁ3 gz'__:i{‘f;’ and g3=jf3'

Inserting Egs. (26) and (27) into equation (24), and Egs. (28)
and (29) into Eq. (25), we get

a =q,+ 2 (fi+ ficosdT + £3,) (30)
my,
0Sd

I

¥y

q,= (8,+8,cosdl + g8 )+ M g, 3D

We now introduce a new input variable &, such that

85,=8,- -::—Zcos ar (32)
3

Inserting Eq. (32) into Eq. (31) gives
osd
1

¥y

q,= (&+88,)tMaq,. (33)

Substituting Eq. (32) for &_ in Eq. (30) and using the fact that
lX/ch <1, we get

oS

a,=q, +——
11 m nl‘/,

(fi + frc084T + f5,1) 34

We now linearize Eqs. (33) and (34) about the trim condi-
tions. The linearized equations will be used to design the
linear control part. These equations have the following forms:

A, =Aq, + Z,Aa, + ZAS  + Z AT (35)
Aq, =M Aa, + M;AS  + M Aq, (36)

In the above equations, the variables with A mean the
perturbation variables and dimensional derivatives such as
Z,and M are given by

oS o  9f of;
Z == (24 ZEcosdl'+=26),
% (aa, da, o8 da, 2
Qsd dg,  9dg, dg,
M == (=Ly 2lcosd+ 5),
* 1, da, Oa, da, )
d
Z&=@f37M¢$=QS g3,and ZF=—4QSSin4F'
myV, 1 mV,

y t

We take the pitch autopilot structure shown in Fig. 2. In
Fig. 2, [ is the estimated bank angle. Except for the path
of cos4f‘K5q, this is due to Nesline[7].

Gome + * W,
—-K, i
e Eina® oy

¥
£
Fig. 2. Pitch autopilot structure.

On the other hand, from the Eq. (24),
a,=@,-4q,V, (37
which gives a perturbed equation about Aa_  as follows :
Aa, = (bd, — Aq )V, (38)

We now consider the yaw motion. In yaw motion, C; is
written as [6]

Cyo = f,(n,a,)sin4l" . 39

Then, similar to the pitch case, it follows from Assumption
5 and 6 that

Cy= fs(na,)s, (40)
CnO = f4(n,a,)sin4l" (41)
Cnl = 85(”,(1,)5r (42)

Furthermore, f,, fsand g, , g satisfy the following relation-
ship:
l

Il 5
845 _jf4 > &8s ="Ef5

Inserting Egs. (39)~(42) into Egs. (20) and (22), and
neglecting the terms g, p, and (p, —I)q, , we get

. OS

I'==—(f,sin4l + f$8,)/sina, — rcota, 43)
m,
Sd
o= S (g sindl 4 88,04 N, (44)

y

As in the pitch case, we introduce a new varjable §,, such that

8 =5,—Eisindr (45)
8s

Inserting Eq. (45) into (44) yields

Sd
Fo= QI—g5<5,,1 +Nr, (46)

m

¥y

Substituting Eq. (45) for &, in Eq. (43) and using again the
fact that |/ /I |<1, we have

. N
I'= %——(ﬂ sindll + f,,)/sina, —r, cote,  (47)
m t

Linearization procedure is similar to the pitch case and we
finally get the equations in the form of
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Al =Y Aa, + L.AT + VA8, (48)
AF, = N,Ar, + N Aa, + N;AS, 49)

The structure of yaw autopilot is taken to be a simple rate
loop as shown in Fig. 3 where yaw rate command is always

given by 0.
re=0
~ Tm
&4
K=—-=
or 2

Fig. 3. Yaw autopilot structure.

Parameters of the linear control part in pitch and yaw auto-
pilot can be determined by using design tools for the linear
control systems and the linearized model derived above.
Moreover, these control parameters are mostly scheduled in
appropriate ways to cope with the wide variation of flight
conditions. In this study, K,,W;,K and K, were sched-
uled by Mach number, height, and K, , K, and K, were
scheduled by Mach number, height, and total angle of attack.

The rationale of nonlinear terms in the autopilot is self-
evident. K cos 4T in the yaw autopilot compensates for the
variation of aerodynamic nonlinearities due to the varia-
tion of bank angle and K, sin4[ in the yaw autopilot
compensates for the induced yawing moment.

Now consider the estimators of bank angle and total angle
of attack. Design problem of these estimators is not our con-
cern. We consider simple estimators here. For the estimation
of the bank angle, we shall use the following two forms :

—a

= tan'l(-_—yd') (50

zeb

£ =tan"' () (51)

z¢

where a,, and a,, are the missile acceleration in the body
coordinates, and a, and a, are the acceleration commands
in the same coordinates. Major difference between 1" and
IA"C is that the former has phase-lag compared to the true
value while the latter has phase-lead. So, it seems desirable to
mix them properly. Practical application will be shown later.
For the estimation of total angle of attack, we shall make use
of the table which stores the data of total angle of attack vs.
pitch acceleration.

2. Roll autopilots

Similar to the yaw case, C, can be written in the form

C, =gs(n,a)sindl + g,(n,a,)5, (52)
where g, sin4l represents the induced roll moment.

As in the pitch and yaw case, we introduce a new input vari-
able &, such that

5,=5,- i’ﬁsm y (53)
7

Inserting Egs. (52), (53) into Eq. (23) and linearizing the
resultant, we get

Ap, =L, Ap, +L,8, + L,Aq, (54)

Roll autopilot structure is selected as shown in Fig. 4.

Fig. 4. Roll autopilot structure.

In Fig 4., ¢ is the roll angle, and A¢ and Ap, satisfy the
following equation.

A =Ap, (55)

Based on Egs. (54) and (55), K,, K, can be determined
easily for given trim conditions. Thereafter, K and K can
are scheduled by the Mach number and height, and K is
scheduled by Mach number, height, and total angle of attack.
A nonlinear term K, sin4l" compensates for the induced
roll moment.

3. Integrated flight control system

The block diagram of integrated autopilot is shown in Fig. 5.
According to the block diagram, the guidance commands a
and a_, are transformed to @, and a, by the roll angle, first.
Then, the autopilot assumed to be fixed in the maneuver coor-
dinates calculates the control fin deflections (J,,5,,5,) using
the estimates I" and 4,, and measured outputs from sensors.
Finally, (5,,6,,0,)are transformed to the actual fin deflec-
tions (6,,6,,0,) using the estimate T, .

The measured outputs a,,, a,, g, and # aught to be
transformed to the maneuver coordinates via the transform
matrix C" =[-T",], before used in each autopilot.

Now, we introduce another structure shown in Fig. 5-b
named Structure II. It is worth examining how closely Struc-
ture I can approximate the other, because Structure II is much
simpler than the other from the viewpoint of implementation.
In order to do so, the yaw rate feedback loop should be the
same as the pitch rate feedback loop. Then the following pro-
cedure seems pertinent to the goal. First, design the linear
control part of the autopilot in the body frame without con-
cerning of aerodynamic nonlinearities and induced moments.
Next, calculate the compensation terms in the body coordi-
nates by proper transformation, i.e.,

AS, = K, sindl’

AS, . | K, sindl"
=[-T1, Lo
AS K 5 SINAL
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So far, it is not quite clear that structure II can be a good
substitute in any practical situation, but simulation results,
which will be given later, show that the responses of the two
structures are very close. It needs further study to make clear
the relation between them.

Ia,
n
Ly — Pitc b
— @y ™ . Cpn > 6.6,.0.
oy —] e Autopilot " hd

:’)_—1‘

1o}

qu 7y —w CZ' ‘_I

Asp, Qyp, B2y — P

Ym a
v ’
Yaw
Autopilot
3

A
Roll
Autopilot

I

Ct=[Tlx, Cy=[-Tlx, aw=Vada+ai

Fig. 5-a. Integrated autopilot(Structure I).

Pitch %a
Gz — Autopilot + %
Frrg b

Ay Am G T

Yaw ;
apme ™ Autopilot + O
FEEY M

Qe Ay 7y T'

O
go=0 —»f RO LT, 5,
Autopilot +
ot " 100

by é
Fig. 5-b. Integrated autopilot(Structure II).

V. Design results and performance analysis about
the linearized model

In this section, we explain the design results of the pitch,
yaw, and roll autopilot. First, linear control part was designed
at the following trim conditions: glide phase, Mach 2.6,
bank angle of 22.5° and total acceleration of 10, 20, 30g. In
order to see the effects of aerodynamic nonlinearities and in-
duced moments, we performed two set of linear simulations at
bank angles of 0° and 45° using the autopilot designed at the
bank angle of 22.5°. The time responses of the first set
which has no compensation terms are shown in Fig. 6 and Fig.
7. The responses vary with acceleration command and bank
angle severely.

The response of the second set which has compensation

terms is shown in Fig 8. As expected, the effects of nonlineari-
ties and induced moments varying with the bank angle were
compensated properly. The responses for other acceleration
commands almost same with Fig. 8.

Under the assumption that the true value of bank angle and
total angle of attack are available and actuator dynamics is
modeled as the 1st order system, the stability was examined at
the design points using the complete linearized models which
are coupled among the pitch, yaw, and roll channel, and in-
volve actuator dynamics. The results of analysis show that
gain and phase margins of the pitch autopilot are more than
10dB and 40°, arid the stability margin in roll and yaw autopi-
lot also meet the design requirements.

45 T T T T T T T 7 T
/_\\\BANK:AEP

PITCH ACCELERATION : [g]

0 O‘\ 0‘2 OIB OI4 0’5 0‘8 0‘7 0.6 09 1
TIME SEC
Fig. 6. Responses without compensation term Responses vary

with bank angle.

04

02

NORMALIZED PITCH ACCELERATION

02

0 01 02 03 04 05 06 07 08 09 1
TIME SEC

Fig. 7. Responses without compensation terms (bank angle
22.5%). Responses vary with acceleration commands.

35

T r T
' BANK=45° '

T
.
30 [BANKZ22 8%/ \\ S -
P TN e
) R . .

F2

N
]

&

o

PITCH ACCELERATION [g}

o

] 01 02 03 04 05 08 07 0B c8 1
TME SEC

Fig. 8. Responses with compensation terms. The effects of
nonlinearities and induced moments varying with the
bank angle were compensated.
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VI. 6-DOF Simulation

In this section, we show the 6-DOF simulation results. We
performed simulations for the 3 cases: Case 1 for an autopilot,
which was designed in a conventional way so that no informa-
tion about bank angle and total angle of attack is used in it,
Case 2 and Case 3 for the proposed autopilot with Structure I
and Structure II, respectively. For each case, velocity was
almost fixed at Mach 2.6 and three kinds of acceleration
commands were given so that the bank angle were kept almost
at 0°, 22.5°%, and 45°, respectively. The results are shown in Fig.
9~12. As expected, Case 2 and Case 3 show superior re-
sponses to Case 1. Another notable observation is that Case 2
and Case 3 give very close responses.

35

30 N
case 2 & case 3 -

e —eme gy

PITCH CHANNEL

o
o

;
/

- case 1

o
53

=3

o

YAW CHANNEL

PITCH & YAW ACCELERATION : (g]
o

case 2 & case 3
e e Sme Ly
case'1

°
i
S
‘
!
)
b
[
|
!

&

02 03 04 05 06 07 08 09 1
TIME : SEC

£
e,

Fig. 9. 6-DOF simulation results.(Pitch and Yaw acceleration,
bank angle almost 0°)

30

case 2 & case 3

o
o

4 PITCH CHANNEL
case 1

N
S

o

case 1

' case‘2 & ca;eé .
YAW CHANNEL

PITCH & YAW ACCELERATION : G
o H

=3
T

L

0 01 02 03 04 05 06 07 08 09 1
TIME : SEC

Fig. 10. 6-DOF simulation results.(Pitch and Yaw acceleration,
bank angle almost 22.5%

25

20 PITCH & YAW CHANNEL

case 2 & case 3

<
F
2 15 case 1
<
o
w
=}
8
g 1. ,
<
2 ,
£
- 5
T
o
=
a
o/
5. . . . . . . . B .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TIME : SEC

Fig. 11. 6-DOF simulation results.(Pitch and Yaw acceleration,
bank angle almost 45°)

ROLL ANGLE : DEG
@

7N ,case 2
0 e ‘ease 3
a1 e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TIME : SEC

Fig. 12. 6-DOF simulation results.(Roll angle, bank angle
almost 22.5%

VII. Conclusions and further study

A new design approach to the autopilot for STT missiles
was proposed. First, we derived the missile motion model
where the aerodynamic characteristics are well delineated and
based on that model, a design technique for the pitch, yaw, and
roll autopilot was presented. With the proposed autopilot and
simple estimators of bank angle and total angle of attack, it
was shown by computer simulations that the performance is
superior to that of the conventional ones.

Robustness problem over the whole closed loop system
containing estimators of bank angle and total angle of attack,
aerodynamic uncertainties or external disturbances was not
considered here. We leave it to future study. We took gain-
scheduling scheme to cover the wide range of flight conditions,
but analytical gain scheduling studied by Huang and Lin[8] or
pseudo-linearization method might give better solution to this
problem. As mentioned in the earlier section, Structure II of
the proposed autopilot needs further study. Moreover, the
structure of linear control part which came from Nesline's
work could be extended to more general one. These problems
should be addressed in a future study.
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