• Title/Summary/Keyword: model based diagnose

Search Result 191, Processing Time 0.026 seconds

A Hierarchical Approach for Diagnose of Safety Performance and Factor Identification for Black Spots (Black on Suwon-city) (사고다발지점의 안전성능진단 및 위치별 사고요인분석(수원시를 중심으로))

  • Kim, Suk-Hui;Jang, Jeong-A;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Accident type and/or factor identification is important in accident reduction planning. The aim of this paper is to apply the hierarchical approach with binomial distribution and logistic regression analysis to find out types and factors, respectively. Based on 2001 Suwon city black spot data, a binomial distribution modeling approach has been applied to diagnose the black spots, with the help of safety performance modeling approach has been applied to diagnose the black spots, with the help of safety performance function. Then, the logistic regression analysis has been employed to identify the critical factors. Some accident remedies are also reviewed in the light of the model outcomes. The proposed research framework sheds light on a different accident related research and can also be successfully applied to similar studies and sites.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

Multimodal Medical Image Fusion Based on Two-Scale Decomposer and Detail Preservation Model (이중스케일분해기와 미세정보 보존모델에 기반한 다중 모드 의료영상 융합연구)

  • Zhang, Yingmei;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.655-658
    • /
    • 2021
  • The purpose of multimodal medical image fusion (MMIF) is to integrate images of different modes with different details into a result image with rich information, which is convenient for doctors to accurately diagnose and treat the diseased tissues of patients. Encouraged by this purpose, this paper proposes a novel method based on a two-scale decomposer and detail preservation model. The first step is to use the two-scale decomposer to decompose the source image into the energy layers and structure layers, which have the characteristic of detail preservation. And then, structure tensor operator and max-abs are combined to fuse the structure layers. The detail preservation model is proposed for the fusion of the energy layers, which greatly improves the image performance. The fused image is achieved by summing up the two fused sub-images obtained by the above fusion rules. Experiments demonstrate that the proposed method has superior performance compared with the state-of-the-art fusion methods.

RBR Based Network Configuration Fault Management Algorithms using Agent Collaboration (에이전트들 간의 협력을 통한 RBR 기반의 네트워크 구성 장애 관리 알고리즘)

  • Jo, Gwang-Jong;An, Seong-Jin;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.497-504
    • /
    • 2002
  • This paper proposes fault diagnosis and correction algorithms using agent collaboration, and a management model for managing network configuration faults. This management model is composed of three processes-fault detection, fault diagnosis and fault correction. Each process, based on RBR, operates on using rules which are consisted in Rule-based Knowledge Database. Proposed algorithm selves the complex fault problem that a system could not work out by itself, using agent collaboration. And the algorithm does efficiently diagnose and correct network configuration faults in abnormal network states.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

VRIO Model Based Enterprise Capability Assessment Framework for Plant Project (VRIO 모델 기반의 기업역량평가 프레임워크 제시에 관한 연구 - 플랜트 사업을 중심으로 -)

  • Min, Byeong Su;Min, Jang Hee;Jang, Woosik;Han, Seung-Heon;Kang, Sin Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.61-70
    • /
    • 2016
  • Construction enterprises have performed various projects such as buildings, infrastructure and plant projects in the international market. Among these, the plant project's amount of orders accounted for about 68.9% of all. However, because of the enterprises won a contract with a low-budget for plant project in the last 10 years, the profit has dropped dramatically. And it is forecasted that there are extreme competition for bid award of plant projects because of the current falling oil prices and raising interest rates. In this circumstance, the comprehending of enterprises strength and weakness must be a priority to get a sustainable competitive advantage. Therefore this research suggests the enterprises's capability assessment framework and it is in order to diagnose the korean construction enterprises capabilities. The framework is based on the VRIO model that is on the basis of resource based theory. First, the capability assessment indices and their importance and priority that based on the life-cycle of plant project is deducted by literature review and survey. Second, the 5 point likert score applied VRIO survey is conducted to diagnose the enterprises and quantified the survey result using the fuzzy theory. Lastly, the competitvie implication and capability assessment are deducted.

Proposed ICT-based New Normal Smart Care System Model to Close Health Gap for Older the Elderly

  • YOO, Chae-Hyun;SHIN, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.37-44
    • /
    • 2021
  • At the time of entering the super-aged society, the health problem of the elderly is becoming more prominent due to the rapid digital era caused by COVID-19, but the gap between welfare budgets and welfare benefits according to regional characteristics is still not narrowed and there is a significant difference in emergency medical access. In response, this study proposes an ICT-based New Normal Smart Care System (NNSCS) to bridge the gap I n health and medical problems. This is an integrated system model that links the elderly themselves to health care, self-diagnosis, disease prediction and prevention, and emergency medical services. The purpose is to apply location-based technology and motion recognition technology under smartphones and smartwatches (wearable) environments to detect health care and risks, predict and diagnose diseases using health and medical big data, and minimize treatment latency. Through the New Normal Smart Care System (NNSCS), which links health care, prevention, and rapid emergency treatment with easy and simple access to health care for the elderly, it aims to minimize health gaps and solve health problems for the elderly.

Fault Diagnosis of Variable Speed Refrigeration System Based on Current Information

  • Lee, Dong-Gyu;Jeong, Seok-Kwon;Hua, Li
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.137-144
    • /
    • 2008
  • This study deals with on-line fault detection and diagnosis(FDD) for heat exchangers of a variable speed refrigeration system(VSRS) based on current information. The current residual which is the difference between real detected current from current sensors and estimated current from no fault model was utilized to diagnose faults of the heat exchangers. Comparing to the conventional FDD of constant refrigeration system based on temperature and pressure information, the suggested FDD method shows better robustness to the VSRS which has a feedback control loop. Moreover the suggested method can be expected more precise and faster diagnosis of faults about heat exchangers. Throughout some experiments, the validity of the method was verified.

Identification of Cardiovascular Disease Based on Echocardiography and Electrocardiogram Data Using the Decision Tree Classification Approach

  • Tb Ai Munandar;Sumiati;Vidila Rosalina
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.150-156
    • /
    • 2023
  • For a doctor, diagnosing a patient's heart disease is not easy. It takes the ability and experience with high flying hours to be able to accurately diagnose the type of patient's heart disease based on the existing factors in the patient. Several studies have been carried out to develop tools to identify types of heart disease in patients. However, most only focus on the results of patient answers and lab results, the rest use only echocardiography data or electrocardiogram results. This research was conducted to test how accurate the results of the classification of heart disease by using two medical data, namely echocardiography and electrocardiogram. Three treatments were applied to the two medical data and analyzed using the decision tree approach. The first treatment was to build a classification model for types of heart disease based on echocardiography and electrocardiogram data, the second treatment only used echocardiography data and the third treatment only used electrocardiogram data. The results showed that the classification of types of heart disease in the first treatment had a higher level of accuracy than the second and third treatments. The accuracy level for the first, second and third treatment were 78.95%, 73.69% and 50%, respectively. This shows that in order to diagnose the type of patient's heart disease, it is advisable to look at the records of both the patient's medical data (echocardiography and electrocardiogram) to get an accurate level of diagnosis results that can be accounted for.