• Title/Summary/Keyword: model based PID control

Search Result 277, Processing Time 0.025 seconds

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

Improved 3-DOF Attitude Control of a Model Helicopter using Fuzzy-Tuning PID Controller (퍼지 동조 PID 제어기를 이용한 모형 헬리콥터의 개선된 3자유도 자세제어)

  • Park, Mun-Soo;Park, Duck-Gee;Jung, Won-Jae;Kim, Byung-Do;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2470-2472
    • /
    • 2001
  • This paper describes the application of a fuzzy-tuning PID controller to a 3-DOF attitude control of a small model helicopter in hover for the compensation of coupling effects between each axis and system uncertainties due to the variation of engine RPM. A Low-level PID controller is designed by Ziegler-Nichols method and its gains are tuned by a high-level fuzzy system based on error states and its time derivatives. The experimental results show that the attitude control performance of fuzzy-tuning PID controller is improved comparing with that of a Ziegler-Nichols PID controller and fuzzy controller.

  • PDF

Design of Optimized Adaptive PID Control Structures using Model Reduction and RLSE (모델축소와 RLSE을 이용한 최적화 적응형 PID 제어 구조 설계)

  • Cho, Joon-Ho;Choi, Jeoung-Nae;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.609-615
    • /
    • 2007
  • We propose an optimized adaptive PID control scheme. This paper is focused on the development of model reduction as well as a new adoptive control structure (viz. a recursive least square estimation (RLSE) method-based structure) that is constructed with smith-predictor structure and a real time estimator. The estimator adjust parameters of a reduced model in real time. It leads to robust and superb control performance for the noise or variation of parameters of process. Experimental study reveals that the proposed control structure exhibits more superb output performance in comparison to some previous methods.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Proposal of Practical Reference-Model and It's Performance Improvement for PID Control (PID제어를 위한 실용적인 기준 모델 제안과 성능개선)

  • Hur, J.G.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.66-72
    • /
    • 2007
  • This study proposed new method to decide the reference model necessary for design PID controller. In generally, control design problems using the reference model have the following two factors. One factor is that numerical model of the controlled system can be obtained extremely, and the other is that specification for the closed-loop dynamic performance is pure moderate. Therefore, the control design procedure is essentially based on the partial reference model matching which offers a reasonable method to simplify the design and the controller configuration under the controlled system uncertainty. ITAE(Integral of time-multiplied absolute error) performance index and Kitamori method etc. which were used a reference model method had a limit to settling time and rising time of reference model that it arrived to steady state response according to the controlled system. On this study, if it only knew peak time of overshoot and settling time by measurement signal of the controlled system, it can be made the reference model easily. We proposed new method to improve performance index of the reference model superior to existing reference model index and illustrate the numerical simulation results to show the effectiveness of proposed control method design.

  • PDF

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Position control of robot manipulator using self-turning PID controller (자기동조 PID 제어기를 이용한 로보트 매니플레이터의 위치제어)

  • 김유택;이재호;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.41-44
    • /
    • 1988
  • This paper represents the study of an effective self-tuning PID control for a robot manipulator to track a reference trajectory in spite of the presence of nonlinearities and parameters uncertainties in robot dynamic models. In this control scheme, an error model of the manipulator is established, for the first time, by difference between joint reference trajectory and tracked trajectory. It's model Parameters are estimated by the recursive least-square identification algorithm, and classical controller parameters are determined by pole placement method. A computer simulation study was conducted to demonstrate performance of the proposed self-tuning PID control in joint-based coordinates for a robot with payload.

  • PDF

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.