• Title/Summary/Keyword: model based PID control

Search Result 277, Processing Time 0.025 seconds

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.587-590
    • /
    • 2003
  • In this paper, the control of the differential drive wheeled mobile robot (DDWMR) is studied. Because the DDWMR have non-holonomic constraints, it cannot be stabilized by smooth feedback. The T-S fuzzy model for the DDWMR is presented and a control algorithm Is developed by well known PID control and LMI based regional pole-placement.

  • PDF

Steering and Driver Model to Evaluate the Handling and Stability Characteristics (조종안정성평가 시험을 위한 조향 및 운전자모델)

  • Tak, Tae-oh;Choi, Jae-min
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.241-248
    • /
    • 1998
  • In this study, a modeling method of power-assisted steering systems and driver models for vehicle dynamic analysis using AUTODYN7 is presented. Pressure-flow relations of flow control valve are derived, and the equations of motion of a steering gear are obtained. Combining pressure-flow relations and equations of motion, the steering force can be represented as a function of steering wheel angle or torque. Driver model was modeled based on a PID controller and forward target method. With the steering systems and driver model, various driving tests are conducted using AUTODYN7.

  • PDF

Fuzzy PID Control of Warranty Claims Time Series (보증 클레임 시계열 데이터를 위한 퍼지 PID 제어)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyung-Il;Cho, Sung-Eui
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.175-185
    • /
    • 2009
  • Objectifying claims filed during the warranty period, analyzing the current circumstances and improving on the problem in question is an activity worth doing that could reduce the likelihood of claims to occur, cut down on the costs, and enhance the corporate image of the manufacturer. Existing analyses of claims are confronted with two problems. First, you can't precisely assess the risks of claims involved by means of the value of claims per 100 products alone. Second, even in a normal state, the existing approach fails to capture the probabilistic conflicts that escape the upper control limit of claims, thus leading to wrong control activities. To solve the first problem, this paper proposed that a time series detection concept where the claim rate is monitored based on the date when problems are processed and a hazard function for expression of the claim rate be utilized. For the second problem, this paper designed a model whereby to define a normal state by making use of PID (Proportion, Integral, Differential) and infer by way of a fuzzy concept. This paper confirmed the validity and applicability of the proposed approach by applying methods suggested in the actual past data of warranty claims of a large-scaled automotive firm, unlike hypothetical simulation data, in order to apply them directly in industrial job sites, as well as making theoretical suggestions for analysis of claims.

The Solving of Ambiguity Problem on the Hybrid Control for Robot Manipulator (로보트 매니퓰레이터의 하이브리드 제어시 발생하는 애매함의 극복)

  • 정상근;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.59-68
    • /
    • 1992
  • In this paper, we proposed coordinator description and ambiguity on the hybrid controller for position/force control of robot manipulator. When the hybrid controller is desiged based on the PID control conception, the parameter sharing problem must be considered. However, selection problem of coordinate system on n-DOF robot manipulator control is unsolved. Moreover, contact force on object and change of shape make another problems. And it is very difficult to figure out the accurate mathematical model of manipulator on account of ambiguity and nonlinearity of actuator. Therfore, we design a new hybrid controller, FPID(Fuzzy PID). For verifying the validity of the controller, we tried computer simulation of this system. As a result, we can get remarkable improvement of overdamping and overshooting. Also we can solve compicance problem effectively. Furthermore, ambiguity problem is solved by adding control knowledge based compensator. So robust controller can be acheived, too.

  • PDF

On interfacing model predictive controllers with low-level loops

  • Lee, Yongho;Park, Sunwon;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.301-304
    • /
    • 1997
  • Two options arising during implementation of an advanced model-based control system on a process with low-level loops are discussed. Strengths and deficiencies of the options are examined and methods to overcome the deficiencies are proposed. Simulation results of a CSTR and distillation column are presented to demonstrate the performance improvements.

  • PDF

Fuzzy Control of Underwater Robotic Vehicles (무인 잠수정의 퍼지제어)

  • Lee, W.;Kang, G.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

Adaptive predictive level control of waste heat steam boiler based on bilinear model (쌍일차 모델을 이용한 폐열 스팀 보일러의 액위 적응 예측 제어)

  • Oh, Sea-Cheon;Yeo, Yeong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.344-350
    • /
    • 1996
  • An adaptive predictive level control of waste heat steam boiler was studied by using mathematical models considering the inverse response. The simulation experiments of the model identification were performed by using linear and bilinear models. From the results of simulations it was found that the bilinear model represented the actual dynamic behavior of steam boiler very well. ARMA model was used in the model identification and the adaptive predictive controller. To verify the performance and effectiveness of the adaptive predictive controller used in this study the simulation results of the adaptive predictive level control for waste heat steam boiler based on bilinear model were compared to those of P, PI and PID controller. The results of simulations showed that the adaptive predictive controller provides the fast arrival to setpoint of liquid level.

  • PDF

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

An Experimental Method of Model Installed Dynamic Positioning System for Drillship (드릴쉽에 대한 DPS 모형시험 기법개발)

  • Dong-Yeon Lee;Mun-Keun Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.33-43
    • /
    • 2001
  • The design and construction of special purpose vessels such as drillship and shuttle tankers have been increased. These vessels install the DPS(dynamic positioning systems) to maintain the position and heading for long-time operation. This paper deals with the experimental method for model-based DP system and the control theory and filter algorithms. In this experiment, the length of model ship is 4 meters and it has three thrusters to maintain the position. The ability of tracking along the given course and keeping of heading in waves are confirmed. For the calculation of thruster input the PID control theory are adopted and the effects of PID gain were investigated. To estimate the low frequency motions Kalman filter and digital filter were used and their effects were investigated.

  • PDF