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Abstract: In this paper, the control of the differential
drive wheeled mobile robot (DDWMR) is studied.
Because the DDWMR have non-holonomic constraints, it
cannot be stabilized by smooth feedback. The T-S fuzzy
model for the DDWMR is presented and a control
algorithm is developed by well known PID control and
LMI based regional pole-placement.

I. INTRODUCTION

Various kinds of mobile robots have been developed
and recently, many of scalars devote their efforts on
these areas. Among them, the differential drive and car-
like wheeled mobile robot(WMR) are most widely used
in their application field. Since the WMR system is a
typical non-holonomic system except the omni-
directional types, the standard control laws must be
developed for systems with non-holonomic constraints.
Due to the fatal property that a WMR with non-
holonomic constraints cannot be stabilizes by a smooth
feedback, it is necessary to find more effective and
advanced algorithms.[1-3]

In this paper, the control of the differential drive
wheeled mobile robot(DDWMR) is studied. Because the
DDWMR have non-holonomic constraints, it cannot be
stabilized by smooth feedback. The T-S fuzzy model for
the DDWMR is presented and a control algorithm is
developed by well known PID control and LMI based
regional pole-placement.

I1. Modeling of Wheeled Mobile Robot

2.1. Dynamic Modeling of Wheeled Mobile Robot|1,4]

The structure of the mobile robot, considered in this
paper, is shown in Fig. 1. The relation between the
forward velocity and the wheel angular velocity is

described by
: (4] M
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where, vand ¢ are forward and rotation velocities of
the robot, respectively, and ris the ratio of the wheel.
And bis the displacement from center robot to center of
wheel. The kinetic equation is
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Figure 1. The mobile robot

In order to derive the dynamic equations, we now define
some variables.

I : Tobot inertia except wheels and rotor
I,,,: motor rotor inertia for wheels and wheel axis

I,,, - motor rotor inertia for wheels and wheel diameter
m : mass of robot except wheels and motor rotor
m,.: mass of wheels and motor rotor

The dynamic equation of a of robot is described by[4,5]
M(@)i+V(g, §) =E@)r -4 ()2 3

where, Ais Lagrangy multiplier, ris the torque of each
wheels, and d is the displacement from the center of

mass to the center of rotation, q=|:x y 4 gZ]T and
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Eliminate the Lagrange multiplier A, and define the
state variables, input and the output as
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then, the state space representation of mobile robot is []
(1) = AP(O)x(0) + Byu(1)
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In the equation (7), controllability matrix [4, Byl is

controllable except when the variable ¢(1) = 0 .

2.2. Takagi-Sugeno Fuzzy Model of wheeled Mobile
Robot[5]

The fuzzy model proposed by Tagaki and Sugeno is
described by IF-THEN rules which represent local linear
input-output relations of a nonlinear system.[8] The main
feature of a T-S fuzzy model is to express the local
dynamics of each fuzzy rule by a linear system model.

For the DDWMR, the elements of matrices By and
C are constant and there is only one time-varying
parameter ¢ . The fuzzy model for wheeled mobile
robot described by the equation (8) becomes
If ¢(t)=M;
THEN {xm=A(¢)x(r)+BOu(t) .
() = Cx(r),

(&)

The final outputs of the fuzzy systems are inferred as
follows:
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y(0) = Cx(6)
The equation (11) is a state-space representation of
wheeled mobile robot in which terms B, and C are

which constant, and in which the only term 4; is

dependent on the term ¢(r) which equal to the
deference of velocities from the right wheel to left wheel.

II1. Control of Mobile Robot

We are now state a controller structure presented in
this paper, and a new control design algorithm for mobile
robot.

3.1. Controller Structure

The most important control strategy of physical
systems is reference tracking. To achieve this objective,
the control structure is shown by figure 2. In figure 2,
control parameters in the block are all fuzzy controller. It
is shown in figure 2 that the controller has two control
parameters one of which is state feedback and the other
is control gain with integrator. The input signal is

described by
u(f) =—-F(u)x(t) + K(u) |e(r)dt 0

where, F(u) is a fuzzy state feedback gain matrix and
K(u) is a fuzzy integrator gain matrix. In order for
obtain controller gains F(yx) and K(u), it is needed to
simplify control input or controller structure. The new
state x,,; can be defined at & in the figure 1. Then the

dynamic equation becomes

Fig. 1. Controller structure

588



[ (1) }: Zi:#iAl('lji) 0 [ x(1) }
xn+1(t) -C 0 -"n+l(’)

+ ﬁﬂ u() + m r(1) (8.2)
x()
={C 0 8b
v = ]|:xn+1(t)] (8.b)
and, the control input is
B x(1)
u(t)=[ F (1) K(ﬂ)][xnﬂ(t)} )]

It is known by the equation (9) that the control input is
state feedback for the system described by the equation

(8).

3.2 Regional Pole Placement

The LMI region is defined following definition{6].
Definition 1. LMI regions are convex subset D of the
complex plan characterized by

T*
D={zeC:L+Mz+M z} (10)

where M and L are fixed real matrices, and z and
*
z are complex valued scalar and its complex conjugate

pair.
The matrix valued function
*
fD(z)éL+1Vz+MTz (11)
is called the characteristic function of the region D . We
are now state a local pole placement. Let A, be the
fuzzy model obtained by substituting the 4 as i-th

sample. And select a function u(p™/"), a local convex
function, then the following theorem states the algorithm
of obtaining the controller gain matrix for ;.
Theorem 1: For M,;, the closed loop poles lie in the
LMIregion D

T*
D={zeC:L+Mz+M z}

where,
L—LT—[J. ] M—l:m ]
- Tk i< ksm” Jk i<, k<m
if and only if there exists a symmetric matrix X
satisfying following four inequalities.

T
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Ao X+m A5 (B)X +my, A (¢.)} <0
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X>0
proof) Proof of this theorem is simple extension Chilali
and Gahinet’s work [6]. QED

Theorem 1 states the local regional pole placement of
the M;. Because the equation (33) is not convex, we

Define
Y, £ FX, then conditions of local pole placement is

cannot obtain the controller gain matrix.

summarized by theorem 2.
Theorem 2: The closed loop poles lie in the LMI region

D if and only if there exists a symmetric matrix X
satisfying following inequalities.

[/1 i Xrm (A X +BY;)

(13)

+m/g-(A(¢,-)X+BY,-)T:|1<j i <

X>0

the i-th state-feedback gain matrix is

(A K]-rx” (4
proof) The proof of this theorem is very simple
extension of the results of Chilali and Gahinet’s work [6].
QED.

The theorem 1 and theorem 2 shows the local regional
pole-placement condition &Aftlhe way of finding local
controller gains. The global pole-placement condition
and global controller gain can be achieved by using
approximated plant. In order for global pole-placement,
the control input, made up of local controller gain, is
selected by

u()==~| Y m@IFEO + ) s dK; e(t)dr} (15)

By noting the equation (15), the controller gain is made
up of local controller gains and which is convex
combination of local controller gains between
[Gg,---D~G-1,j,---D] . The following theorem states the
global regional pole-placement.
Theorem 3. Assume that the plant model is modeled by
the equation (6) and local controller gains are obtained
by the equation (14) for local fuzzy model. Then the
closed loop poles are lie in the desired region.
Proof). The proof of this theorem is very simple
extension of the results of Chilali and Gahinet’s work.
QED.
The theorem 3 states the global global-placement
condition and controller design procedure is summarized
as 1) sampling model 2) design local controller 3)
combine it.

IV. Simulation
In simulation, the robot considered is MIROSOT
soccer robot, and detailed specifications are summarized

in the table 1.

Table 1. The specifications of MIROSOT robot

Size 70x70x70 mm
Wheel diameter 45 mm
Rpm 8000
Gear ratio 8:1

The mass of the robot is 0.0612 Kg m/sec’ and the mass
of wheels is 0.0051 kg m/sec’ . And other parameters
used in this paper were

b=35mm, c=r/2b,d=10mm.
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The robot inertia except wheels and rotor is 0.05

Kgcmsec2 and motor rotor inertia for wheels and wheel

axis is 0.0176 Kgcmsec2 . These parameters were

actually measured and computed for MIROSOT robot
designed Yujin Robotics corp. In this paper, the
maximum velocity of the wheel was the maximum
velocity of the motor specification.

By using parameters described above, state space
matrices for the mobile robot are

00 1 0
ue 00 0 o

0 0 40.7370¢ 40.5002¢

0 0 -40.50024 40.73704

0 0

ol O 0 Cs[o 01 0]
071 01055 220917 0001

220917 0.1055

Membership functions of this paper are shown in the
figure 4. Figure 5 and Figure 6 are simulation results for
pulse reference input. The controller is the PI control
loop which is designed well known LQ algorithm. In
order to the diagonal gain matrix, some technical trick is
used for selecting weighting matrices. It is shown by
figure 1 that the velocity following error becomes zero.
But the overshoot is occurred and by it, the tracking
results include error.
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Figure 4. The membership functions
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Figure 6. Tracking result

V. Conclusion
In this paper, the DDWMR is considered. The T-S
fuzzy model for DDWMR is presented and control
algorithm is suggested. The controller is the PI control
loop which is designed well known LQ algorithm. In
order to the diagonal gain matrix, some technical trick is
used for selecting weighting matrices. It is shown by this
paper that the presented algorithm is more easy way of
control of the DDWMR and that the result of this paper

can be applicable to car-like WMR.
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