• Title/Summary/Keyword: model based

Search Result 60,316, Processing Time 0.077 seconds

A Numerical Study of Smoke Movement by Fire In Atrium Space (화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 -)

  • 노재성;유홍선;정연태
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

비포화 흐름에서 Hysteresis 모델의 비교 연구

  • 박창근;선우중호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1991.07a
    • /
    • pp.221-230
    • /
    • 1991
  • Various Models of the moisture content-capillary pressure hysteresie based on the approach of domain concept in porous media are compared with each other, Model III-1(Mualem, 1984) is superio to others as expected. A new model based on Model III-1 is proposed of which asuumption is the linearization of P$$($\theta$) accounting for the pore blockage effect against air-entry. The feature of this model is that only one branch of boundary curve is needed to calibrate it, which is the advantage to Model III-1. The prediction of boundary drying curve from boundary wetting curve using this model is better than that using Model I-1, II-1 compared with the experimental data. This model is to simulate scanning curves, while Model I-1, II-1 is not.

  • PDF

Simulation of the cardiac depolarization based on three dimensional ventricular model. (3차원 심실모델을 이용한 심장의 탈분극 시뮬레이션)

  • Lee, K.J.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.146-149
    • /
    • 1992
  • The cardiac depolarization model using three dimensional ventricular model is simulated. To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac potential model is generated by the logical combination of the elliptic equations. The action potential duration could be obtained from the fact that it is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none". Based on the activation time and the action potential duration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison the results of model simulation with the physiological data was performed.

  • PDF

An Application of a Sunshine Duration Model Based on GIS Data to Suitability of Measurement Site around the Seonleung Park

  • Kim, Eun-Ryoung;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.331-336
    • /
    • 2015
  • In this study, a numerical model developed for sunshine duration based on GIS data was used. This model considers blocking caused by topography and buildings and it is properly applicable to evaluation of sunshine duration environment in urban areas. The model reasonably well predicted the solar altitude and azimuth angels, compared to those provided by Korea Astronomy and Space Science Institute (KASI). The developed model was applied to evaluation of sunshine duration environment around the Seonleung Park located near a building-congested area in Seoul. The model well reproduced shadow caused by buildings and/or topography in the numerical domain at 09:00 on August 1, 2015. In addition, the model was applied to finding a suitable measurement sites for pyrheliometer around the Seonleung Park. The model was also usefully applied to finding a suitable site for pyrheliometer in an urban area.

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut and Tie Model (비선형 스트럿-타이 모델에 의한 PC 구조물의 정착부 설계)

  • 배한옥;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.392-397
    • /
    • 1997
  • In this paper, design and analysis of anchorage zone in prestressed concrete structure using nonlinear strut and tie model is presented. Nonlinear strut and tie model is an analysis and design model which constructs strut and tie model based on nonlinear analysis considering the nonlinear behavior of concrete. Based on the nonlinear strut and tie model, the analysis and design are performed for the anchorage zone having singular concentric tendons, singular eccentric tendons and multiple tendons, respectively. For verification of the model, comparisons are made with experimental results as well as results by linear strut and tie models. from the comparisons, it is shown that the design of the anchorage zone by the nonlinear model is still economical without loosing the degree of safety and the prediction of the ultimate load by the nonlinear model gives better accuracy than by the linear one.

  • PDF

Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model (RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

A Study on Behavioral Model and Spatial Configuration Analysis model in the Architectural Space (건축공간의 행동모델과 공간구조 분석모델에 관한 연구)

  • Lee, Jong-Ruyl
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • In space syntax, the mathmatical process to get a integration could be restrictive in understanding spatial configuration since it is based on only one behavior model. In this study, As another approach to spatial configuration analysis based on behavioral model, there is the simulation tracking analysis model that simulates the movements of human in the space and analyze them. In this study, the relationship between integration and behavioral model will be defined and the similarities and the differences between space syntax and the simulation tracking analysis model will be demonstrated. Furthermore, these two analysis models will be understood as a variety of tools that can analyze an object in multiple viewpoints.

A General Radar Scattering Model for Earth Surfaces

  • Jung, Goo-Jun;Lee, Sung-Hwa;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.41-43
    • /
    • 2003
  • A radar scattering model is developed based on an empirical rough surface scattering model, the radiative transfer model (RTM), a numerical simulation algorithm of radar scattering from particles, and experimental data obtained by ground-based scatterometers and SAR systems. At first, the scattering matrices of scattering particles such as a leaf, a branch, and a trunk, have been modeled using the physical optics (PO) model and the numerical full-wave analysis. Then, radar scattering from a group of mixed particles has been modeled using the RTM, which leads to a general scattering model for earth surfaces. Finally, the scattering model has been verified with the experimental data obtained by scatterometers and SAR systems.

  • PDF

Improved Social Force Model based on Navigation Points for Crowd Emergent Evacuation

  • Li, Jun;Zhang, Haoxiang;Ni, Zhongrui
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1309-1323
    • /
    • 2020
  • Crowd evacuation simulation is an important research issue for designing reasonable building layouts and planning more effective evacuation routes. The social force model (SFM) is an important pedestrian movement model, and is widely used in crowd evacuation simulations. The model can effectively simulate crowd evacuation behaviors in a simple scene, but for a multi-obstacle scene, the model could result in some undesirable problems, such as pedestrian evacuation trajectory oscillation, pedestrian stagnation and poor evacuation routing. This paper analyzes the causes of these problems and proposes an improved SFM for complex multi-obstacle scenes. The new model adds navigation points and walking shortest route principles to the SFM. Based on the proposed model, a crowd evacuation simulation system is developed, and the crowd evacuation simulation was carried out in various scenes, including some with simple obstacles, as well as those with multi-obstacles. Experiments show that the pedestrians in the proposed model can effectively bypass obstacles and plan reasonable evacuation routes.

Drill Wear Modelling based on Motor Current and Application to Real-time Wear Estimation (모터전류를 기초로 한 드릴 마멸 모델링과 실시간 마멸 추정)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.77-87
    • /
    • 1995
  • In-process detection of drill wear is one of the most important technoligies for automatic, unmaned machining systems. In this study, an on-line drill wear estimation model based on spindle/Z-axis motor currents generated during the drilling process is proposed. The theoretical model is obtained by integrating the drilling process model and the servomechanism model. The drilling process model describes the relationship of drill wear and drilling torque/ thrust force, whereas the servomechanism model describes the relationship of drilling torque/ thrust force applied to motor and spindle/Z-axis motor current. Evaluation tests have shown that the proposed model is a good real-time estimator for drill wear.

  • PDF