• Title/Summary/Keyword: model based

Search Result 60,316, Processing Time 0.081 seconds

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • Shirgir, Sina;Azar, Bahman Farahmand;Hadidi, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.493-506
    • /
    • 2020
  • In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model (다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출)

  • Kim, Tae-Ho;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

Kalman-Filter Based Static Load Modeling of Real Power System Using K-EMS Data

  • Lee, Soo-Hyoung;Son, Seo-Eun;Lee, Sung-Moo;Cho, Jong-Man;Song, Kyung-Bin;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.304-311
    • /
    • 2012
  • So far, the importance for an accurate load model has been constantly raised and its necessity would be further more emphasized. Currently used load model for analysis of power system in Korea was developed 10 years ago, which is aggregated by applying the statistically estimated load compositions to load models based on individual appliances. As modern appliances have diversified and rapidly changed, the existing load model is no longer compatible with current loads in the Korean power system. Therefore, a measurement based load model is more suitable for modern power system analysis because it can accurately include the load characteristics by directly measuring target load. This paper proposes a ZIP model employing a Kalman-filter as the estimation algorithm for the model parameters. The Kamlan-filter based parameter identification offers an advantage of fast parameter determination by removing iterative calculation. To verify the proposed load model, the four-second-interval real data from the Korea Energy Management System (K-EMS) is used.

A Study on the Architecture-based Model of High Availability of Railway Control Systems (열차제어시스템의 아키텍처 기반 고가용도 모델 적용에 관한 연구)

  • Lee, Kyoung-Haing;Kwon, Yong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2011
  • This work describes an availability model of highly available systems to achieve Five-9's availability. Modern railway systems have raised users' expectations of powerful "always on" services. The crucial characteristics of these highly available services are essential to many modern businesses area, such as telecommunications, railway systems, information operations, Web-based businesses, and so on. The architecture-based model of system availability is useful to assess the feasibility of meeting a high availability target. The Markov model approach is straightforward for relative system engineers to adapt when they model highly available system failure and the failure recovery process. This work proposed the improved availability model through UML2.0. It is shown that the architecture-based model of system availability is a good reasonable by its application of the railway systems.

Epidemic Disease Spreading Simulation Model Based on Census Data (센서스 데이터를 기반으로 만든 전염병 전파 시뮬레이션 모델)

  • Hwang, Kyosang;Lee, Taesik;Lee, Hyunrok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Epidemic models are used to analyze the spreading of epidemic diseases, estimate public health needs, and assess the effectiveness of mitigation strategies. Modeling scope of an epidemic model ranges from the regional scale to national and global scale. Most of the epidemic models developed in Korea are at the national scale using the equation-based model. While these models are useful for designing and evaluating national public health policies, they do not provide sufficient details. As an alternative, individual-based models at the regional scale are often used to describe disease spreading, so that various mitigation strategies can be designed and tested. This paper presents an individual-based epidemic spreading model at regional scale. This model incorporates 2005 census data to build the synthetic population in the model representing Daejeon in 2005. The model's capability is demonstrated by an example where we assess the effectiveness of several mitigation strategies using the model.

Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning (메타강화학습을 이용한 수중로봇 매니퓰레이터 제어)

  • Moon, Ji-Youn;Moon, Jang-Hyuk;Bae, Sung-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • This paper introduces model-based meta reinforcement learning as a control for the manipulator of an underwater construction robot. Model-based meta reinforcement learning updates the model fast using recent experience in a real application and transfers the model to model predictive control which computes control inputs of the manipulator to reach the target position. The simulation environment for model-based meta reinforcement learning is established using MuJoCo and Gazebo. The real environment of manipulator control for underwater construction robot is set to deal with model uncertainties.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

A Study on AI-based Composite Supplementary Index for Complementing the Composite Index of Business Indicators (경기종합지수 보완을 위한 AI기반의 합성보조지수 연구)

  • JUNG, NAK HYUN;Taeyeon Oh;Kim, Kang Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.363-379
    • /
    • 2023
  • Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.

Advancing Process Plant Design: A Framework for Design Automation Using Generative Neural Network Models

  • Minhyuk JUNG;Jaemook CHOI;Seonu JOO;Wonseok CHOI;Hwikyung Chun
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1285-1285
    • /
    • 2024
  • In process plant construction, the implementation of design automation technologies is pivotal in reducing the timeframes associated with the design phase and in enabling the generation and evaluation of a variety of design alternatives, thereby facilitating the identification of optimal solutions. These technologies can play a crucial role in ensuring the successful delivery of projects. Previous research in the domain of design automation has primarily focused on parametric design in architectural contexts and on the automation of equipment layout and pipe routing within plant engineering, predominantly employing rule-based algorithms. Nevertheless, these studies are constrained by the limited flexibility of their models, which narrows the scope for generating alternative solutions and complicates the process of exploring comprehensive solutions using nonlinear optimization techniques as the number of design and engineering parameters increases. This research introduces a framework for automating plant design through the use of generative neural network models to overcome these challenges. The framework is applicable to the layout problems of process plants, covering the equipment necessary for production processes and the facilities for essential resources and their interconnections. The development of the proposed Neural-network (NN) based Generative Design Model unfolds in four stages: (a) Rule-based Model Development: This initial phase involves the development of rule-based models for layout generation and evaluation, where the generation model produces layouts based on predefined parameters, and the evaluation model assesses these layouts using various performance metrics. (b) Neural Network Model Development: This phase transitions towards neural network models, establishing a NN-based layout generation model utilizing Generative Adversarial Network (GAN)-based methods and a NN-based layout evaluation model. (c) Model Optimization: The third phase is dedicated to optimizing the models through Bayesian Optimization, aiming to extend the exploration space beyond the limitations of rule-based models. (d) Inverse Design Model Development: The concluding phase employs an inverse design method to merge the generative and evaluative networks, resulting in a model that outputs layout designs to meet specific performance objectives. This study aims to augment the efficiency and effectiveness of the design process in process plant construction, transcending the limitations of conventional rule-based approaches and contributing to the achievement of successful project outcomes.