• 제목/요약/키워드: mode velocity

검색결과 951건 처리시간 0.028초

강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구 (An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection)

  • 박정;이기만;신강숭
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

터치폰 인터랙션의 Flicking에 대한 감성 터치감에 대한 연구 (A Research on Emotion Assessment by Touch Sensibility Flicking on Mobile Phone)

  • 김지혜;황민철;김치중;박재언;문성철
    • 대한인간공학회지
    • /
    • 제29권4호
    • /
    • pp.533-540
    • /
    • 2010
  • This study was to suggest the proper level of touch sensibility for twenties while flicking touch phones. A rapid prototype of $480{\times}800$ pixel size was developed for the experiment. Participants were 20 undergraduates, not visually and physically handicapped in using touch phones. 15 different modes, with each mode changing in velocity when flicking the prototype were randomly presented to each subject. The subjects were asked to score what they felt in each mode on a 1-to-6 Likert scale. The data was analyzed by the one-way ANOVA procedure. Each mode showed significant differences in 8 representative emotions except for exclusivity feeling and fresh feeling. Each velocity mode was scaled by the multidimensional scaling technique. Then, vector coordinates in each emotion were obtained by simple regression analysis. 15 velocity modes and each emotion were joint-plotted by the MDS, PROXSCAL. The findings in this study could be basic data for studying affective touch sensibilities in multiple ways.

수소를 연료로 사용한 프리피스톤 리니어 엔진의 수치해석에 관한 연구 (The Research about Free Piston Linear Engine Fueled with Hydrogen using Numerical Analysis)

  • 왼바흥;오용일;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.162-172
    • /
    • 2012
  • This paper presents a research about free piston linear engine (FPLE) fueled with hydrogen, in which, the numerical models are built to simulate the operation during the full stroke of the engine. Dynamic model, linear alternator model and thermodynamic model are used as the numerical models to predict piston velocity, in-cylinder pressure and electric power of FPLE. The spark timing and air gap length are changed to provide information for the prediction. Beside, the heat transfer problem is also investigated in the paper. The results of research are divided by two parts, including motoring mode and firing mode. The result of motoring mode showed that there is validation between simulation and experiment for volume and pressure in cylinder. For firing mode, by increasing spark timing, the velocity of piston, peak pressure and electric power also increase respectively. Beside, when increasing air gap length, the electric power increases accordingly while the motion of piston is not symmetric. The effect of heat transfer also observed clearly by reducing of the peak pressure, velocity of piston and electric power.

적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어 (Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

The Observational Evidence for the Internal Excitation of Umbral Velocity Oscillations

  • Cho, Kyuhyoun;Chae, Jounchul
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.47.2-47.2
    • /
    • 2018
  • The umbral oscillations of velocity are commonly observed in the chromosphere of a sunspot. Their sources are considered to be either the external p-mode driving or the internal excitation by magnetoconvection. Even though the possibility of the p-mode driving has been often considered, the internal excitation has been rarely investigated. We report the observational evidence for the internal excitation obtained by analyzing velocity oscillations in the temperature minimum region of a sunspot umbra. The velocity oscillations in the temperature minimum region were determined from Fe I $5435{\AA}$ line data taken by the Fast Imaging Solar Spectrograph (FISS) of the 1.6 m Goode solar Telescope (GST) at the Big Bear Solar Observatory. As a result, we discovered 4 events of oscillations which appear to be internally excited. We analyze their characteristics and relation to photospheric features. Based on these results, we estimate the contribution of the internal excitation for umbral oscillations and discuss their importance.

  • PDF

비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어 (Trajectory control of a manipulator by the decoupling sliding mode method)

  • 남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.842-848
    • /
    • 2005
  • The decoupling control using state feedback was once intensively studied during 1960's by many researchers. However, this control scheme was sensitive to the disturbance and Parameter variations. SMC(sliding mode control) is known as a robust control methodology to overcome such a disturbance. In this paper. the decoupling control by means of SM(sliding mode) for a trajectory control of a two-degrees-of- freedom manipulator was discussed. The position and velocity of manipulator tip were adopted to compose a nonlinear error functions. The reference inputs of the controller can be decided by switching function combined with the desired position and velocity. Simulation result is provided to verify the effectiveness of the proposed control scheme.

BCCOMICS: Baryon-Cold dark matter COsMological Initial Condition generator for Small-scale structures

  • Ahn, Kyungjin
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.35.3-36
    • /
    • 2016
  • Density and velocity perturbations in scales most relevant for the first galaxy formation are strongly affected by large-scale density perturbations, velocity-divergence perturbations and the baryon-cold dark matter (CDM) streaming velocities. Even at redshifts as high as z~200, this mode-mode coupling imprints a significant impact on the small-scale perturbations, at the wavenumber k >${\sim}100Mpc^{-1}$, as was calculated in our recent work. This implies that cosmological initial conditions based on the usual linear theory is no longer valid in these scales. We present a new cosmological initial condition generator, BCCOMICS, which generates initial conditions for the cold dark matter (CDM) and baryons in scales most relevant for the first galaxy formation. BCCOMICS is based on the linear perturbation theory including the mode-mode coupling terms, and generates cosmological initial conditions for the SPH-basded code GADGET and the AMR-based code ENZO. We also present our preliminary result on the cosmic variance of the first galaxy formation, studied by using BCCOMICS.

  • PDF

지하매설 배관의 축대칭 파동 전파 가능성 해석 (Analysis on the Likelihood of Axisymmetric Wave Propagation in Buried Water Pipes)

  • 박경조
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.36-41
    • /
    • 2013
  • A study of the possible axisymmetric modes that propagate at low frequencies in buried, water-filled pipes is presented. It is well known that for a vacuum-pipe-vacuum system the sole non-torsional axisymmetric mode that exists at low frequencies is the fundamental L(0,1) mode. When a pipe is filled with water and still surrounded by a vacuum it is also known that another mode then appears which at low frequencies is characterized by predominantly axial water-borne displacements. In addition to these modes. this paper explores two other, less well known axisymmetric modes whose exitence depends on the acoustic properties of the outer medium that surrounds a pipe. The predicted characteristics of these modes are presented and the likelihood of them propagating over any significant distance in a buried water pipe is discussed.