• 제목/요약/키워드: mode shape ratios

검색결과 55건 처리시간 0.027초

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

모델링 오차를 고려한 신경망 기법 기반 손상추정방법 (Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models)

  • Lee, Jong-Jae;Yun, Chung-Bang;Lee, Jong-Won;Jung, Hie-Young
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.382-387
    • /
    • 2003
  • In this paper, a neural networks-based damage detection method using the modal properties is presented, which can effectively reduce the effect of the modeling errors in the baseline finite element model from which the training patterns for the networks are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  • PDF

다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석 (Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method)

  • 백승엽;권재욱;이경돈
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF

軸引張力을 받는 變斷面 보의 自由振動 (Free Vibration of Tapered Beams Under Tensile Axial Force)

  • 이병구;김연태;모정만
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.57-65
    • /
    • 1992
  • The main purpose of this paper is to present both the natural frequencies and mode shapes of tapered beams under tensile axial force. The differential equation governing planar free vibration for tapered beams under tensile axial force is derived as nondimensional form. The three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and constraints are applied in numerical examples. The lowest four nondimensional natural frequencies are reported as the function of nondimensional tensile axial force. The fundamental natural frequencies are presented when section ratios and nondimensional axial forces are varied. The effects of cross sectional shapes are reported and some typical mode shapes are also presented.

  • PDF

AMDM for free vibration analysis of rotating tapered beams

  • Mao, Qibo
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.419-432
    • /
    • 2015
  • The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the cross-section vary linearly along the length is investigated by using the Adomian modified decomposition method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless natural frequencies and the closed form series solution of the corresponding mode shapes can be easily obtained simultaneously. The computed results for different taper ratios as well as different offset length and rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence and comparison with the previous published results. It is shown that the AMDM provides an accurate and straightforward method of free vibration analysis of rotating tapered beams.

이동부하를 가지고 병진운동하는 유연보의 운동 해석 (Motion analysis of a Translating Flexible Beam Carrying a Moving Mass)

  • 박상덕;정완균;염영일
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.204-212
    • /
    • 1999
  • In this paper, the vibrational motion of a flexible beam clamped on a translating base and carrying a moving mass is investigated. The equations of motion which describe the total dynamics of the beam-mass-cart system are derived and the coupled dynamic equations are solved by unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for the position of the moving mass and the ratios of the mass of the flexible beam, the moving mass and the base cart are used. Proper transformations of the time solutions between the normal modes for a position and those for the next position of the moving mass are also adopted. Numerical simulations are carried out to obtain the open-loop responses of the system in tracking the pre-designed path of the moving mass.

  • PDF

CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석 (Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube)

  • 박치용;유기완
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

HHT method for system identification and damage detection: an experimental study

  • Zhou, Lily L.;Yan, Gang
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.141-154
    • /
    • 2006
  • Recently, the Hilbert-Huang transform (HHT) has gained considerable attention as a novel technique of signal processing, which shows promise for the system identification and damage detection of structures. This study investigates the effectiveness and accuracy of the HHT method for the system identification and damage detection of structures through a series of experiments. A multi-degree-of-freedom (MDOF) structural model has been constructed with modular members, and the columns of the model can be replaced or removed to simulate damages at different locations with different severities. The measured response data of the structure due to an impulse loading is first decomposed into modal responses using the empirical mode decomposition (EMD) approach with a band-pass filter technique. Then, the Hilbert transform is subsequently applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least-square fit procedure is used to identify the natural frequencies and damping ratios from the instantaneous amplitude and phase angle for each modal response. When the responses at all degrees of freedom are measured, the mode shape and the physical mass, damping and stiffness matrices of the structure can be determined. Based on a comparison of the stiffness of each story unit prior to and after the damage, the damage locations and severities can be identified. Experimental results demonstrate that the HHT method yields quite accurate results for engineering applications, providing a promising tool for structural health monitoring.

Field Measurements of the New CCTV Tower in Beijing

  • Xu, Y.L.;Zhan, S.;Xia, H.;Xia, Y.;Zhang, N.
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.171-178
    • /
    • 2013
  • The emergence of a growing number of tall buildings, often with unusual shapes and innovative structural systems, has led to the realization of the need for and the importance of field measurements. The new China Central Television (CCTV) Tower in Beijing is one of tall buildings with a highly unusual shape and a complex structural system, requiring field measurements to identify its dynamic characteristics for the subsequent dynamic analysis of the tower under wind excitation, seismic-induced ground motion and traffic-induced ground motion. The structural system and the finite element model of the CCTV Tower are first introduced in this paper. The computed natural frequencies and mode shapes are then presented as a reference for the field measurement. After introducing the arrangement of the ambient vibration measurement, the field measured natural frequencies and damping ratios of the CCTV Tower are presented and the measured natural frequencies are finally compared with the computed ones. It was found that the structural damping ratios of the CCTV Tower are small and the computed natural frequencies are smaller than the measured ones by about 12~17%.

Direct strength measurement of Timoshenko-beam model: Vibration analysis of double walled carbon nanotubes

  • Ghandourah, Emad;Hussain, Muzamal;Thobiani, Faisal Al;Hefni, Mohammed;Alghamdi, Sami
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.77-83
    • /
    • 2022
  • In the last ten years, many researchers have studied the vibrations of carbon nanotubes using different beam theories. The nano- and micro-scale systems have wavy shape and there is a demand for a powerful tool to mathematically model waviness of those systems. In accordance with the above mentioned lack for the modeling of the waviness of the curved tiny structure, a novel approach is employed by implementing the Timoshenko-beam model. Owing to the small size of the micro beam, these structures are very appropriate for designing small instruments. The vibrations of double walled carbon nanotubes (DWCNTs) are developed using the Timoshenko-beam model in conjunction with the wave propagation approach under support conditions to calculate the fundamental frequencies of DWCNTs. The frequency influence is observed with different parameters. Vibrations of the double walled carbon nanotubes are investigated in order to find their vibrational modes with frequencies. The aspect ratios and half axial wave mode with small length are investigated. It is calculated that these frequencies and ratios are dependent upon the length scale and aspect ratio.