• 제목/요약/키워드: mode shape ratios

검색결과 55건 처리시간 0.023초

Effect of Pretension on Moored Ship Response

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.175-187
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like Exploration and drilling vessels, Production barges, Cable-laying vessels, Rock dumping vessels, Research and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modelled and tested in the wave basin. The pretensions of the lines are varied by altering the touchdown points and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs calculated for various situations provide better insight to the designer.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

웨이블렛 변환을 이용한 구조물의 결함 진단 (Structural Damage Detection Using Wavelet Transform)

  • 김창구;박광호;기창구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.194-200
    • /
    • 1999
  • Localized damage to a structure affects its dynamic properties, and much work has been undertaken investigating the variation of natural frequencies, damping ratios and mode shapes. This paper presents a technique based on wavelet transform to detect the existences and locations of structural damages. The procedure operates solely on the mode shape from the damaged structure, and does not require a priori knowledge of the undamaged structure. The procedure is developed using a 32-story shear building model. Applying wavelet transform to the mode shape successfully identifies the location of damage. The procedure is best suited to the mode shape obtained from the fundamental natural frequency. The wavelet coefficients from the higher mode shapes can be used to verify the location of damage, but they are not as sensitive as the wavelet coefficients of the lower mode shapes.

  • PDF

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

해석모델의 불확실성을 고려한 교량의 손상추정기법 (Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model)

  • 이종재;윤정방
    • 한국전산구조공학회논문집
    • /
    • 제19권2호
    • /
    • pp.125-138
    • /
    • 2006
  • 교량의 손상추정을 위한 구조계 규명기법은 신호취득시스템 및 정보처리기술의 발전과 함께 최근에 많은 연구개발이 이루어지고 있다. 신경망기법이나 유전자 알고리즘과 같은 소프트컴퓨팅 기법은 뛰어난 패턴인식성능 때문에 손상추정 문제에 활발히 활용되고 있다. 본 연구에서는 모드계수를 활용한 신경망기법기반 손상추정을 수행하였으며, 신경망을 훈련시키기 위한 훈련패턴을 생성하는 해석모델에서의 불확실성을 효과적으로 고려할 수 있는 방법을 제시하였다. 해석모델의 불확실성 대하여 민감하지 않은 입력자료인 손상 전 후의 모드형상의 차 또는 모드형상의 비를 신경망의 입력자료로 활용하였다. 단 순보와 다주형교량에 대한 수치예제를 통하여 본 연구에서 제시한 기법의 타당성 및 적용성을 검증하였다.

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

Fracture analysis for nozzle cracks in nuclear reactor pressure vessel using FCPAS

  • Abdurrezzak Boz;Oguzhan Demir
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2292-2306
    • /
    • 2024
  • This study addresses cracks and fracture problems in engineering structures that may cause significant challenges and safety concerns, with a focus on pressure vessels in nuclear power plants. Comprehensive parametric three-dimensional mixed mode fracture analyses for inclined and deflected nozzle corner cracks with various crack shape aspect ratios and depth ratios in nuclear reactor pressure vessels are carried out. Stress intensity factor (SIF) solutions are obtained using FRAC3D, which is part of Fracture and Crack Propagation Analysis System (FCPAS), employing enriched finite elements along the crack front. Also, improved empirical equations are developed to allow the determination of mixed mode SIFs, KI, KII, and KIII, for any values of the parameters considered in the study. This study provides practical solutions to assess the remaining life and fail-safe conditions of nuclear reactors by providing accurate SIF determination.

실험적 모우드 계수를 이용한 교량의 주행하중 해석 (Moving Load Analysis of Bridge Structures Using Experimental Modal Data)

  • 이형진
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.409-420
    • /
    • 2002
  • 본 논문에서는 상시진동계측 결과를 활용하여 교랑의 이동하중해석을 수행하기 위한 구조재해석 기법을 제시하였다. 구조재해석을 위해 필요한 실구조물의 고유진동수와 모우드 형상은 직접퓨리에 분석을 통해 구하고, 감쇠비는 Random Decrement기법을 이용하는 방법을 사용하였다. 또한, 계측 모우드 형상을 구조재해석에 필요한 자유도로 보간하기 위한 보간법을 제시하였다. 더불어, 제시된 구조재해석기법을 이동질량 모형에 기초한 주행하중 해석에 적용하여 이를 직접 해석한 결과와 비교하였다 해석결과는 상시진동 계측의 결과만을 이용하여 수행된 구조재해석 결과도 교량의 실제 응답을 잘 표현할 수 있음을 보여주고 있다.

일정표면적 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with Constant Surface Area)

  • 이병구;오상진;박창은;이태은
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.66-73
    • /
    • 2011
  • This paper deals with free vibrations of the tapered beams with the constant surface area. The surface area of the objective beams are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear and parabolic ones. Ordinary differential equations governing free vibrations of such beams are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam parameters such as section ratio, surface area ratio, end constraint and taper type are reported in tables and figures. Especially, section ratios of the strongest beam are calculated, under which the maximum frequencies are achieved.