• Title/Summary/Keyword: mode shape parameter

Search Result 137, Processing Time 0.026 seconds

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Resonance Characteristics of a Arch Bridge for High-Speed Railways (고속철도 아치교량의 공진특성)

  • Nam, Deok Woo;Choi, Hong Kil;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • The dynamic vehicle running tests were performed to analyze dynamic behavioral characteristics such as displacement, strain history loop and vibration acceleration in arch bridges. Also, the validity of the modeling was verified by comparing the results of the tests and those of the structural analysis modeling. With the resonance revision of verified modeling, when the ratio of excited frequencies to natural frequencies exceeds ${1{\pm}0.04}$, the stability of the bridge is obtained. Also, in the event of resonance by speed parameter, the second mode shape is dominant to the dynamic behaviors of arch bridges. It is found that manipulating the parameters involving arch ribs can increase the second mode natural frequency. It makes critical velocity greater than operational velocities to guarantee the stability of arch bridges.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Algebraic Method for Computation of Natural Frequency and Mode Shape Sensitivities (고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법)

  • Jung, Gil-Ho;Kim, Dong-Ok;Lee, Chong-Won;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.707-718
    • /
    • 1997
  • This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furthermore, it saves computer sotrage and CPU time. The algorithm preserves not only the symmetricity but also the band width of the matrices, allowing efficient computer storage and solution techniques. Results from the proposed method for calculating the eigenpair derivatives are compared with those from Rudisill and Chu's method and Nelson's method which is known efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, lying adjacent to the multiplicity of multiple natural frequency distinct eigenvalues, which appear when design parameter varies. A cantilever beam is used to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies. Results form the proposed method for calculating the eigenpair derivatives are compared with those from Dailey's method(an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is presented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

Cosmological parameter constraints from galaxy-galaxy lensing with the Deep Lens Survey

  • Yoon, Mijin;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.3-55
    • /
    • 2017
  • The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 deg2 survey carried out with NOAO's Blanco and Mayalltelescopes. DLS is unique in its depth reaching down to ~27th mags in BVRz bands. This enables a broad redshift baseline and is optimal for investigating cosmological evolution of the large scale structure. Galaxy-galaxylensing is a powerful tool to estimate averaged matter distribution around lensgalaxies by measuring shape distortions of background galaxies. The signal from galaxy-galaxy lensing is sensitive not only to galaxy halo properties, but also to cosmological environment at large scales. In this study, we measure galaxy-galaxy lensing and galaxy clustering, which together put strong constraints on the cosmological parameters. We obtain significant galaxy-galaxy lensing signals out to ~20 Mpc while tightly controlling systematics. The B-mode signals are consistent with zero. Our lens-source flip test indicates that minimal systematic errors are present in DLS photometric redshifts. Shear calibration is performed using high-fidelity galaxy image simulations. We demonstrate that the overall shape of the galaxy-galaxy lensing signal is well described by the halo model comprised of central and non-central halo contributions. Finally, we present our preliminary constraints on the matter density and the normalization parameters.

  • PDF

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Buckling Load and Mode Analysis of Symmetric Multi-laminated Cylinders with Elliptical Cross-section (다층 대칭배열된 타원형 적층관의 좌굴하중 및 모드해석)

  • Chun, Kyoung Sik;Son, Byung Jik;Ji, Hyo Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.457-464
    • /
    • 2006
  • Fiber-reinforced composite materials due to their high specific strength, high stiffness and light weight are becoming increasingly used in many engineering industry, especially in the aerospace, marin and civil, etc. In this paper, the buckling load and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations are analyzed. For solving this problems, a versatile flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. Also, an improved shell element has been established by the combined use of the addition of enhanced assumed strain and the substitute shear strain fields. The combined influence of shell geometry and elliptical cross-sectional parameter, fiber angle, and lay-up on the buckling loads of elliptical cylinder is examined. The critical buckling loads and mode shapes analyzed here may serve as a benchmark for future investigations.

Handwritten Image Segmentation by the Modified Area-based Region Selection Technique (변형된 면적기반영역선별 기법에 의한 문자영상분할)

  • Hwang Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.30-36
    • /
    • 2006
  • In this paper, a new type of written image segmentation based on relative comparison of region areas is proposed. The original image is composed of two distinctive regions; information and background. Compared with this binary original image, the observed one is the gray scale which is represented with complex regions with speckles and noise due to degradation or contamination. For applying threshold or statistical approach, there occurs the region-deformation problem in the process of binarization. At first step, the efficient iterated conditional mode (ICM) which takes the lozenge type block is used for regions formation into the binary image. Secondly the information region is estimated through selecting action and restored its primary state. Not only decision of the attachment to a region but also the calculation of the magnitude of its area are carried on at each current pixel iteratively. All region areas are sorted into a set and selected through the decision parameter which is obtained statistically. Our experiments show that these approaches are effective on ink-rubbed copy image (拓本 'Takbon') and efficient at shape restoration. Experiments on gray scale image show promising shape extraction results, comparing with the threshold-segmentation and conventional ICM method.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.