• Title/Summary/Keyword: mode shape and natural frequency

Search Result 354, Processing Time 0.023 seconds

Topology Optimization Technique using Strain Energy Distributions induced by the Mode Shapes associated with Natural Frequencies (구조물의 자유진동모드로 유발되는 변형에너지 분포를 이용한 위상최적화기법)

  • Lee, Sang-Jin;Bae, Jung-Eun;Park, Gyeong-Im
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1015-1018
    • /
    • 2006
  • In this paper, new topology optimization technique is proposed. It mainly uses the strain energy distributions induced by the mode shapes associated with natural frequencies of the structure and so we can implicitly consider the dynamic characteristics of the structure in the topology optimization process. The strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The cantilever beam problem is adopted to test the proposed techniques. From numerical test, it is found to be that the optimum topology of the cantilever produced by the proposed technique has a hugh increase of natural frequency value and the technique is very effective to maximize the fundamental frequency of the structure.

  • PDF

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

Design of Ultrasonic Vibration Tool Horn for Micromachining Using FEM (유한요소법을 이용한 초음파 진동 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Kim, Kwang-Lae;Kim, Kang-Eun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.63-70
    • /
    • 2008
  • Conical horn is used in many high frequency ultrasonic horns, to achieve a longitudinal vibration mode across a wide ultrasonic tool horn output surface. Modal analysis is method for designing tuned ultrasonic tool horn and for the prediction natural frequency of ultrasonic tool horn vibration mode. The design of ultrasonic horn is based on prototype estimate obtained by FEM analysis. The FEM simulated ultrasonic tool horn is built and characterized experimentally through laser vibrometer and electrical impedance analysis. In this paper, FEM analysis is developed to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape.

Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume (일정체적 단순지지 보-기둥의 동적 최적단면)

  • Lee, Byoung Koo;Park, Kwang Kyou;Mo, Jeong Man;Lee, Sang Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.221-228
    • /
    • 1997
  • The main purpose of this paper is to determine the dynamic optimal shapes of simple beam-columns with the constant volume. The parabolic function is chosen as the variable equation for the depth of regular polygon cross-section. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the simple beam-columns are analysed and the numerical results of this study are shown in tables and figures.

  • PDF

A Study on the Optimal Position Determination of Point Supports to Maximize Fundamental Natural Frequency of Plate (평판의 1차 고유진동수가 최대가 되는 점지지의 최적위치선정에 관한 연구)

  • Hong Do-Kwan;Kim Moon-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1165-1171
    • /
    • 2004
  • The free vibration analyses of the isotropic and CFRP laminated composite rectangular plates with point supports at the fix edge is performed by FEM. We showed optimal position and mode shape of point supports that maximized fundamental natural frequency of the isotropic and CFRP laminated composite rectangular plates by each aspect ratio and the number of point supports.

Vibration Characteristic of a Cylindrical Rod according to the Mounting Locations on the Grid Support Structure (격자 지지구조체에 묶여있는 실린더 형 봉의 삽입위치에 따른 진동특성)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • A vibration test for a cylindrical rod inserted on the grid support structure was tested using the sine sweep excitation method with closed loop force control. The effect of the mounting location of a test rod on the vibration characteristics of a rod continuously supported by the full size($16{\times}16$) grid support was identified. An electromagnetic vibration shaker, non-contact displacement sensor and HP/VXI data acquisition device were used and TDAS software was also used as a data sampling and processing tools. The natural frequencies and mode shape of the test rod were consistent with the previous works of a rod vibration test with partial grids($3{\times}3,\;5{\times}5\;and\;7{\times}7$). The frequency characteristics of the rod according to the mounting location were shown clear discrepancies, but mode shapes were nearly same. As the test rod closes to the bottom clamping region of the spacer grid, peak vibration amplitudes of the rod become smaller.

  • PDF

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Free Vibrations of Tapered Beams with Constant Surface Area (일정표면적 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Park, Chang-Eun;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2011
  • This paper deals with free vibrations of the tapered beams with the constant surface area. The surface area of the objective beams are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear and parabolic ones. Ordinary differential equations governing free vibrations of such beams are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam parameters such as section ratio, surface area ratio, end constraint and taper type are reported in tables and figures. Especially, section ratios of the strongest beam are calculated, under which the maximum frequencies are achieved.

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.