• Title/Summary/Keyword: mode shape and natural frequency

Search Result 354, Processing Time 0.03 seconds

Free Vibration Analysis of a Circular Cylindrical Shell with a Spherical Cap (구형 캡이 결합된 외팔 원통 쉘의 고유진동 해석)

  • J.S. Yim;D.S. Sohn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.355.2-355
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a spherical cap attached at an arbitrary axial position of the shell. The boundary condition of the shell considered here was clamped-free condition. Before the analysis of the shell/spherical cap combined structure, natural frequencies of the cap and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. (omitted)

  • PDF

Flexural Vibration of a Plate with Periodically Nonuniform Material Properties (주기적 불균일 재질 평판의 굽힘 진동 해석)

  • Kim, Jin-O.;Moon, Byung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.737-742
    • /
    • 2000
  • The paper describes a theoretical study on the flexural vibration of an elastic rectangular plate with periodically nonuniform material properties. The approximate solution of the natural frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidity and mass density. It has been shown that distributed modes exist in the plate which is a two-dimensional model of the flat panel speaker.

  • PDF

The Vibration Study on Car Compact Disk Player (자동차탑재용 컴펙트 디스크 플레이어의 진동특성 연구)

  • Lee, Tae-Keun;Kim, Byong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.283-288
    • /
    • 2006
  • This study developes the vibration model to estimate the vibration energy of damper/spring assembly(mainbase assembly) for car CD player, and this model is verified by experiment. From frequency response, response, we investigate the natural frequency and mode shape in the up/down direction. In order to determine the analysis frequency band, we investigate the excitation frequency from the vehicle test. As the characteristics of damper and spring is changed, we carry out the vibration test(transmissibility) and investigate the change of transmissibility.

  • PDF

The Study on the Vibration Characteristics of Vehicle Compact Disk Player (차량탑재용 컴팩트 디스크 플레이어의 진동 특성에 관한 연구)

  • Lee Tae-Keun;Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2005
  • This study developes the vibration model to estimate the vibration energy of compact disc player's mainbase assembly which is supported by dampers and springs, and this model is verified by experiment. From frequency response function, we investigate the natural frequency and mode shape in the up/down direction for mainbase assembly. In order to determine the analysis frequency band, we investigate the excitation frequency of road from the vehicle test. As the characteristics of dampers and springs are changed, we carry out the sensitivity analysis of vibration energy for mainbase assembly which include optical pick-up and feeding system. And we found out that the properties of damper were dominant element in the vibration energy of mainbase assembly's CG(center of gravity).

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

In-plane Free Vibrations of Horseshoe Circular Arch (마제형 원호 아치의 면내 자유진동)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1043-1052
    • /
    • 2014
  • This paper deals with in-plane free vibrations of the horseshoe circular arch. Simultaneous ordinary differential equations governing free vibration of the arch are derived with respect to the radial and tangential deformations. Particularly, differential equations are obtained under the arc length coordinate rather than the angular one in order to extend the horseshoe arch whose subtended angle is greater than ${\pi}$ radians. The differential equations are numerically solved for calculating the natural frequencies accompanying with the corresponding mode shapes. In parametric studies, effects of the rotatory inertia, slenderness ratio and circumferential arc length ratio on frequency parameters are extensively discussed.

Free Vibration of Stepped Horizontally Curved Members Supported by Two-Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 불연속 변단면 수평 곡선부재의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Ahn, Dae Soon;Kim, Mu Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.651-659
    • /
    • 2001
  • The main purpose of this paper is to present an analytical method for free vibration of stepped horizontally curved members on two-parameter elastic foundation. The ordinary differential equations governing the free vibration of such beams are derived as non-dimensional forms including the effects of rotatory inertia and shear deformation. The governing equations are solved numerically for the circular, parabolic, sinusoidal and elliptic curved beams with hinged-hinged, hinged-clamped and clamped-clamped end constraints. As the numerical results, the lowest four natural frequency parameters are presented as the functions of various non-dimensional system parameters. Also the typical mode shapes are presented.

  • PDF

Vibration-based damage detection in wind turbine towers using artificial neural networks

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.507-519
    • /
    • 2018
  • In this paper, damage assessment in wind-turbine towers using vibration-based artificial neural networks (ANNs) is numerically investigated. At first, a vibration-based ANNs algorithm is designed for damage detection in a wind turbine tower. The ANNs architecture consists of an input, an output, and hidden layers. Modal parameters of the wind turbine tower such as mode shapes and frequencies are utilized as the input and the output layer composes of element stiffness indices. Next, the finite element model of a real wind-turbine tower is established as the test structure. The natural frequencies and mode shapes of the test structure are computed under various damage cases of single and multiple damages to generate training patterns. Finally, the ANNs are trained using the generated training patterns and employed to detect damaged elements and severities in the test structure.

Image Noise Reduction Using Structural Mode Shaping for Scanning Electron Microscopy

  • Hamochi, Mitsuru;Wakui, Shinji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • In a scanning electron microscope (SEM), outside acoustic noise causes image noise that distorts observations of the specimen being examined. A SEM that is less sensitive to acoustic noise is highly desirable. This paper investigates the image noise problem by addressing the mode shapes of the base plate and the transmission path of the acoustic noise and vibration. By arranging the position of the rib, a new SEM base plate was developed that had twisting as the 1st and 2nd modes. In those two twisting modes, vibration nodes existed near the center of the base plate where the specimen chamber is placed. Less vibration was transmitted to the chamber and to the specimen by the twisting modes compared to bending ones, which are the 2nd and 3rd modes for a rectangular plain base plate. An SEM with the developed base plate installed exhibited a significant reduction of image noise when exposed to acoustic noises below 250 Hz.