Flexural Vibration of a Plate with Periodically Nonuniform Material Properties

Jin O. Kim, Byung Hwan Moon

ABSTRACT

The paper describes a theoretical study on the flexural vibration of an elastic rectangular plate with periodically nonuniform material properties. The approximate solution of the natural frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidity and mass density. It has been shown that distributed modes exist in the plate which is a two-dimensional model of the flat panel speaker.

1. 서 론

두께 3mm 정도로 얇고 가벼운 '평판 스피커'가 수년 전에 출현하였다.1,2) 기존의 스피커는 보이스コ일에 전달되는 전기신호에 따라 움직여 막이 진동하여 소리를 방사하는 방식으로서, 그 음향 특성을 해석하고 설계하는 체계적인 방법들이 이로 활용되어 있다.3,4) 평판 스피커는 Fig. 1에 개략적으로 보인 바와 같이 두 개의 같은 탄성층이 그 사이에 규칙적으로 보강되어 접합된 평판과 얇은 변환기로 구성된다. 전기신호에 따른 변환기의 기간에 의해 판에 발생된 진동이 전파되면서 평판에 분포된 진동 모드를 형성하여 소리를 발생시키는 것으로 알려져 있는데,5,6) 자세한 이론은 보고되지 않았다.

평판 스피커의 개발은 판 구조물에서의 소음 방지를 역제시키려는 연구 과정에서 얻어진 역학적 부산물로 알려져있다. 비행기 등록과 같이 일정한 간격으로 보강된 구조물에서의 진동에 의한 소음 방지 현상은 오래 전부터 연구대상으로 다루어졌다.7,8) 그러한 연구 결과에 따르면 보강 간격의 불규칙성이 소음 방지를 제한할 수 있음을 보여준다.9,10) 따라서 판 구조물의 주기적 규칙성을 유지하게 외음 방지를 중대할 수 있다는 것이고, 이것이 평판 스피커의 원리이다. 기존의 연구 보고들은 주기적으로 보강된 구조물을 주기적으로 지지된 조건으로 가정하여 해석하기에,11,12) 주기에 해당하는 간격의 균일한 요소들이 결합되었다고 가정하여 광범위에서의 파동 전달로 해석한 것이라고,13) 재질이 주기적으로 불균일한 판의 분포 진동모드를 해석하지는 않았다.

본 연구는 평판 스피커의 작동원리를 개개하고 음향특성을 향상시키는 설계에 활용할 해석적 해를 구하기 위한 목적으로 시작되었다. 본 논문에 앞서 저자들은 Fig. 1에 보인 평판을 1차원으로 단순화하여 초등함수 형태로 재질 모델치가 변화하는 보울 대상으로 진동해석과 파동해석을 하여 밝혀져 있다.14,15) 진동해석 논문에서는 주기적으로 불균일한 재질의 보수에서의 음향 진동 모드에 대해 섭동기법에 의해 근사해를 구하고 유한요소법을 검증한 결과를 제시하였고, 재질의 주기성에 따라 분포 진동모드가 존재함을 밝혔다.

Fig. 1 Schematic diagram of the flat-panel speaker.
2. 문제의 정식화

Fig. 2에 보인 바와 같이 굽힘 경계가 주저진 단면 접대기, 포화수리가 주어진 경우, 무동력.increment 단면이 평평한 피임을 해석한다.

\[
\frac{\partial^2}{\partial x^2} [D(x, y) \left(\frac{\partial^2 W}{\partial x^2} + \nu \frac{\partial^2 W}{\partial y^2} \right)] + \frac{\partial^2}{\partial y^2} [D(x, y) \left(\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 W}{\partial x^2} \right)] + 2(1 - \nu) \frac{\partial^2}{\partial x \partial y} [D(x, y) \frac{\partial^2 W}{\partial x \partial y}] = \omega^2 \rho(x, y) W
\]

\[0 < x < a, \ 0 < y < b \quad (5)\]

평판의 면반이 자유롭고 네 모서리가 단단히 지지되어 있으므로, 경계조건은 다음과 같이 표현된다.

\[
\begin{align*}
W(x, y) &= 0 \quad \text{at} \ ((0,0), (a,0), (0,b), (a,b)) \quad (6a-d) \\
\frac{\partial^2 W}{\partial x^2} + \nu \frac{\partial^2 W}{\partial y^2} &= 0 \quad \text{at} \ x = 0, a \quad (7a,b) \\
\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 W}{\partial x^2} &= 0 \quad \text{at} \ y = 0, b \quad (8a,b)
\end{align*}
\]

보의 켜짐이 가로 세로 방향으로 위치에 따라 주기적으로 변화하는 경우, \(D(x, y)\)와 \(\rho(x, y)\)는 각각 다음과 같이 조화함수를 이용하여 표현할 수 있다.

\[
D(x, y) = D_0 (1 + \varepsilon \sin \xi x)(1 + \varepsilon \sin \eta y) \quad (9)
\]

\[
\rho(x, y) = \rho_0 (1 + \varepsilon \sin \xi x)(1 + \varepsilon \sin \eta y) \quad (10)
\]

여기서 \(\varepsilon\)는 평균값 \(D_0\)를 기준으로 한 갱성 변환 폭이고, \(\varepsilon\)는 \(\rho_0\)를 기준으로 한 단위면 접대기 단면 접대기 폭이다. 또한 \(\xi\)와 \(\eta\)는 단위길이 당 무동력 변환 횟수로서, \(\xi = (2k+1)\pi, \eta = (2k+1)\pi \quad (k, k_0\text{는 정수})\)로 정의하여, \sin \xi a = 0, \sin \eta b = 0 \quad \text{으로 한다. 이와 같이 급변 경계나 뒷지각 위치} x, y에 따라 변화하는 경우 엄밀해를 구할 수 없으므로 다음과 같이 근사해를 구한다.

3. 심볼해법에 의한 근사해

식(5)-(8)로 정의된 경계치 문제는 식(9)-(10)으로 표현된 무동력과 인해 엄밀해를 구할 수 없음으로 근사해법을 사용하게 되는데, 무동력과 위치 x, y에 따라 심볼해법을 주기적으로 변화하고 있어 심볼해법(13)(14)을 사용한다. 이를 위해 변위 진폭 \(W(x, y)\)와 고유진동수 \(\omega\)를 다음과 같이 심볼 해법 \(\varepsilon\)의 급수로 정개한다.

\[
W(x, y) = W_0 (x, y) + \varepsilon W_1 (x, y) + \varepsilon^2 W_2 (x, y) + \cdots \quad (11)
\]
\(\omega = \omega_0 + \epsilon \omega_1 + \epsilon^2 \omega_2 + \cdots \quad (12) \)

식(11)~(12)를 식(5)~(8)에 대입하고 \(\epsilon \)의 오름차순으로 정리하여, \(\epsilon \)의 차수별 운동방정식과 경계조건에 대해 다음과 같이 단계적으로 해를 구한다.

3.1 \(O(\epsilon^0) \) 해

선도차수 \(O(\epsilon^0) \)에 대해서 다음과 같이 고전적인 운동 방정식과 경계조건을 얻는다.

\[
\begin{align*}
\frac{\partial^4 W_0}{\partial x^4} + 2 \frac{\partial^4 W_0}{\partial x^2 \partial y^2} + \frac{\partial^4 W_0}{\partial y^4} - \beta^4 W_0 &= 0 \\
W_0(x, y) &= 0 \quad \text{at} \ (0, 0), (a, 0), (0, b), (a, b) \quad (14a-d)
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 W_0}{\partial x^2} + \nu \frac{\partial^2 W_0}{\partial y^2} &= 0 \quad \text{at} \ x = 0, a \\
\frac{\partial^2 W_0}{\partial y^2} + \nu \frac{\partial^2 W_0}{\partial x^2} &= 0 \quad \text{at} \ y = 0, b
\end{align*}
\]

여기서

\(\beta^4 = \frac{\rho_0 \omega_0}{D_0} \quad (17) \)

식(13)~(16)으로 정의된 문제의 해는 내면이 단순 지지된 명판에 대해 해를 구하는 과정(13)과 유사한 방식에 의해 다음과 같이 구해진다.

\[
W_0(x, y) = A_{mn} \sin a_m x \sin r_n y
\]

\(m, n = 1, 2, 3, \ldots \quad (18) \)

\[
\alpha_m = \frac{m \pi}{a}, \quad r_n = \frac{n \pi}{b}
\]

여기서 \(m, n \)은 진동모드를 나타내고, \(A_{mn} \)은 진폭으로서 \(A_{mn} = 1 \)로 정규화한다.

3.2 \(O(\epsilon^1) \) 해

첫차수 \(O(\epsilon^1) \)에 대한 지배방정식은 \(W_1(x, y) \)로써 다음과 같이 정리된다.

\[
\begin{align*}
\frac{\partial^4 W_1}{\partial x^4} + 2 \frac{\partial^4 W_1}{\partial x^2 \partial y^2} + \frac{\partial^4 W_1}{\partial y^4} - \beta^4 W_1 &= \kappa(x, y) \\
\kappa(x, y) &= -\xi \cos \xi \left[\frac{\partial^3 W_0}{\partial x^3} + (2 - \nu) \frac{\partial^3 W_0}{\partial x \partial y^2} \right] \\
&+ \xi^2 \sin \xi \left[\frac{\partial^2 W_0}{\partial x^2} + \nu \frac{\partial^2 W_0}{\partial y^2} \right]
\end{align*}
\]

여기서

\[
\begin{align*}
\kappa(x, y) &= -\eta \cos \eta \left[\frac{\partial^3 W_0}{\partial y^3} + (2 - \nu) \frac{\partial^3 W_0}{\partial x^2 \partial y} \right] \\
&+ \eta^2 \sin \eta \left[\frac{\partial^2 W_0}{\partial y^2} + \nu \frac{\partial^2 W_0}{\partial x^2} \right] \\
&+ \beta^4 \delta(\sin \xi x + \sin \eta y) W_0 + 2 \beta^4 \frac{\omega_1}{\omega_0} W_0
\end{align*}
\]

식(18)을 식(21)에 대입한 후 정리하면

\[
\begin{align*}
\kappa(x, y) &= D_1 \cos(\alpha + \xi)x \sin \gamma y \\
&+ D_2 \cos(\alpha - \xi)x \sin \gamma y \\
&+ D_3 \sin\alpha x \cos(\gamma + \eta)y \\
&+ D_4 \sin\alpha x \cos(\gamma - \eta)y \\
&+ 2 \frac{\omega_1}{\omega_0} \beta^4 \sin\alpha x \sin \gamma y
\end{align*}
\]

여기서

\[
\begin{align*}
D_1 &= \frac{1}{2} \left(-\beta^4(1 - \delta) + \xi[a^3 - \xi(a^2 + \nu^2) + 2(1 - \nu)a^2] \right) \\
D_2 &= \frac{1}{2} \left(\beta^4(1 - \delta) + \xi[a^3 + \xi(a^2 + \nu^2) + 2(1 - \nu)a^2] \right) \\
D_3 &= \frac{1}{2} \left(-\beta^4(1 - \delta) + \eta[\gamma^3 - \eta(\gamma^2 + \nu\alpha^2) + 2(1 - \nu)\gamma \alpha^2] \right) \\
D_4 &= \frac{1}{2} \left(\beta^4(1 - \delta) + \eta[\gamma^3 + \eta(\gamma^2 + \nu\alpha^2) + 2(1 - \nu)\gamma \alpha^2] \right)
\end{align*}
\]

그리고 \(W_1(x, y) \)에 대한 경계조건은 다음과 같다.

\[
W_1(x, y) = 0 \quad \text{at} \ (0, 0), (a, 0), (0, b), (a, b) \quad (23a-d)
\]

\[
\begin{align*}
\frac{\partial^2 W_1}{\partial x^2} + \nu \frac{\partial^2 W_1}{\partial y^2} &= 0 \quad \text{at} \ x = 0, a \\
\frac{\partial^2 W_1}{\partial y^2} + \nu \frac{\partial^2 W_1}{\partial x^2} &= 0 \quad \text{at} \ y = 0, b
\end{align*}
\]

식(20)~(22)과 경계조건(23)~(25)로 정의된 경계조건의 일반형은 다음과 같다.

\[
W_1(x, y) = -\frac{1}{\alpha^2} \left[(a + \xi)^2 C_1 + (a - \xi)^2 C_2 \right] \cos \alpha x \sin \gamma y
\]

- 739 -
\[-\frac{1}{\gamma^2} [(\gamma + \eta)^2 C_3 + (\gamma - \eta)^2 C_4] \sin \alpha \cos \gamma y \\
+ C_1 \cos (\alpha + \xi) x \sin \gamma y + C_2 \cos (\alpha - \xi) x \sin \gamma y \\
+ C_3 \sin \alpha \cos (\gamma + \eta) y + C_4 \sin \alpha \cos (\gamma - \eta) y \\
+ C_5 x \cos \alpha \sin \gamma y + C_6 y \sin \alpha \cos \gamma y \] (26)

\[\frac{\omega_1}{\omega_0} = -\frac{2}{\beta^2} (a C_5 + \gamma C_6) \] (27)

여기서

\[C_1 = \frac{D_1}{\xi(2a+\xi)[(\alpha+\xi)^2+a^2+2\gamma^2]} \]
\[C_2 = -\frac{D_2}{\xi(2a-\xi)[(\alpha-\xi)^2+a^2+2\gamma^2]} \]
\[C_3 = \frac{D_3}{\eta(2\gamma+\eta)[(\gamma+\eta)^2+\gamma^2+2a^2]} \]
\[C_4 = \frac{D_4}{\eta(2\gamma-\eta)[(\gamma-\eta)^2+\gamma^2+2a^2]} \]
\[C_5 = \frac{1-\cos \xi \alpha}{\alpha^2a} [(\alpha+\xi)^2 C_1 + (\alpha-\xi)^2 C_2] \]
\[C_6 = \frac{1-\cos \eta \beta}{\eta^2b} [(\gamma+\eta)^2 C_3 + (\gamma-\eta)^2 C_4] \]

식 (26)과 (27)은 각각 \((m,n)\)모드의 진동 모드형상 \(W(x,y)\)와 고유진동수 \(\omega\)에 대한 제1차수 근사해가 있다.

3.3 고유진동수와 모드형상

지금까지 얻은 결과로부터 \((m,n)\)모드의 고유 진동수와 모드형상에 대한 근사해를 구한다.

\[\frac{\omega}{\omega_0} = 1 + \epsilon \frac{\omega_1}{\omega_0} + \mathcal{O}(\epsilon^2) \] (28)
\[W(x,y) = W_0(x,y) + \epsilon W_1(x,y) + \mathcal{O}(\epsilon^2) \] (29)

평판 재질의 주기성 \(\xi, \eta, \epsilon, \delta, \nu\)와 포화 농
비 \(\nu\)가 주어지면, 식 (28)과 (29)로부터 주기적 불
균일 재질 평판의 고유진동수와 모드형상을 계산
할 수 있다.

4. 결과 및 토의

앞에서 구한 수학적 해가 의미하는 물리적
현상을 파악하기 위하여, \(\xi a = 21\pi\) (즉 \(k_a=10\)),
\(\eta b = 15\pi\) (즉 \(k_b=7\)), \(\epsilon = 0.5\), \(\delta = 0\), \(\nu = 0.3\)인

경우에 대해 고유진동수와 모드형상을 계산하였다.

4.1 고유진동수

식 (28)을 이용해 기본모드로부터 심어 개의
모드에 대해 고유진동수비 \(\omega/\omega_0\)를 계산한 결과를
Fig. 3에 표현하였다. 그림의 (a)는 \(n=1\)이고 \(m=1\)
부터 20개의 범위에 해당하는 \(a/\xi\)의 함수로
계산된 진동수비 \(\omega/\omega_0\)를 나타낸 것이다. 그림의
(b)는 \(m=1\)이고 \(n=1\)부터 14개의 범위에 해당하
는 \(\gamma/\eta\)의 함수로 계산된 \(\omega/\omega_0\)를 나타낸 것이다.

이 그림들이 공통적으로 보여주듯이, 재질
의 주기성의 영향으로 고유진동수는 대부분의 모
드에서 10~20% 감소한다. 예외적으로 \(a/\xi = 0.5\)
부근과 \(\gamma/\eta = 0.5\) 부근에서 정프하는데, 이는 식
(27)에 표현된 \(C_2\)와 \(C_6\)의 분모가 0이 되어 나타나
는 현상이다.

Fig. 3 Natural frequency of the periodically
nonuniform plate, \(\omega\), normalized to the
natural frequency of the uniform plate,
\(\omega_0\). The frequency ratio \(\omega/\omega_0\) has been
calculated for several modes and depicted
(a) as a function of \(a/\xi\) and (b) as a
function of \(\gamma/\eta\).
4.2 모드형상

식(29)를 이용해 모드형상 \(W(x,y)\)를 계산하였 다. 그중 (1,1)모드, (2,1)모드, (3,1)모드를 Fig. 4 에서 보여준다. 그런데 이 그림들에서는 모드형상 들이 균일 평판의 모드형상 \(W_0(x)\)과 유사함을 보 여주지만 재질 추기성이 모드형상에 미치는 영향 은 파악되기 어렵다. 그래서 불균일 재질 평판의 모드형상에서 균일 재질 평판의 모드형상을 제거 한 결과에 해당하는 \(W_i(x,y)\)를 Fig. 5에 표현하였 다.

Fig. 5에서는 Fig. 4와 같이 3차원으로 나타내면 그림이 너무 혼嶂해지는 단점이 있어서, 평판 의 특정 단면 \(y = b/2\) 에서의 진동 모드형상을 나 타내였다. 이 그림들에서 알 수 있다시피, 주기적 불균일 재질 평판의 고유진동모드에의 추기성의 영향이 분할모드로 포함되어 있다. 이러한 모드형 상은 마치 고차모드의 진동이 저차모드에 함께 발생하는 것처럼 나타나며, 평판스파커에서 응향발 생 원리로 작용하는 것이다.

Fig. 4 Mode shapes \(W(x,y)\) of the periodically nonuniform plate.

Fig. 5 Mode shape corrections \(W_i(x,y)\) of the periodically nonuniform plate at \(y = b/2\).
5. 결론

제질이 주기적으로 불균일한 사각 평판의 진동을 섭동기법으로 근사해를 구한 결과 다음과 같은 결론을 얻었다.

첫째, 제질의 주기성에 따라 분할된 분포진동 모드가 저차모드에서 공존한다. 이는 평판스피커에 사용되는 주기적 불균일 제질 평판의 분포진동 발생 원리이다.

둘째, 섭동법에 의해서 구한 해석적 근사해에 형상과 제질의 수치를 대입하여 편리하게 주기적 불균일 제질 평판의 진동특성을 계산할 수 있게 되었다. 이러한 근사해는 향후에 평판스피커의 음향 방사에 관한 연구에 직접 활용될 수 있을 것이다.

참고문헌

10. 김진오, 문병환, 김준태, "제질이 주기적으로 불균일한 보의 급립 진동 해석", 한국음향학회지, 제18권, 제3호, pp. 73-78 (1999).