• Title/Summary/Keyword: mode sensitivity

검색결과 707건 처리시간 0.023초

단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구 (A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope)

  • 박지원;딘 후사무드;이병렬
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

볼트 결합부의 동적 파라미터 해석 (Dynamic Parameter Analysis of Bolted Joint)

  • 백성남;지태한;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.244-249
    • /
    • 1994
  • The dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this study, the test structures are constructed with two beam structures which are clamped by bolts, and a bolted joint which is modelled as a lumped stiffness element. To identify the dynamic joint parameters with variance of clamping torque of bolts, the sensitivity analysis and the mode energy analysis methods are investigated experimentally. As a result of these two methods, stiffnesses of bolted joint are experimentally found to increase as the clamping torque increases. These stiffnesses identified from the sensitivity analysis and the mode energy analysis method have some difference.

  • PDF

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

Linear Sub-band Decomposition-based Pre-processing for Perceptual Video Coding

  • Choi, Kwang Yeon;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.366-373
    • /
    • 2016
  • This paper proposes a pre-processing algorithm to improve the coding efficiency of perceptual video coding. First, an input image is decomposed into multiple sub-bands through linear sub-band decomposition. Then, the sub-bands that have low visual sensitivity are suppressed by assigning small gains to them. Experimental results show that if the proposed algorithm is adopted for pre-processing in a High Efficiency Video Coding (HEVC) encoder, it can provide significant bit-saving effects of approximately 12% in low delay mode and 9.4% in random access mode.

혼합 요소에서의 개선된 민감도 계산법 (The calculation of refined semi-analytic sensitivity based on the hybrid element)

  • 조맹효;김현기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.686-691
    • /
    • 2001
  • Structural optimization often require the evaluation of design sensitivities. The Semi Analytic method(SAM) is popular for shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements, the SA method shows severe inaccuracy. In this paper, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover, the error of the SA method caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms.

  • PDF

소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계 (Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction)

  • 이원태;김영현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

Experimental validation of dynamic based damage locating indices in RC structures

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.181-206
    • /
    • 2022
  • This paper presents experimental modal analysis and static load testing results to validate the accuracy of dynamic parameters-based damage locating indices in RC structures. The study investigates the accuracy of different dynamic-based damage locating indices compared to observed crack patterns from static load tests and how different damage levels and scenarios impact them. The damage locating indices based on mode shape curvature and mode shape fourth derivate in their original forms were found to show anomalies along the beam length and at the supports. The modified forms of these indices show higher sensitivity in locating single and multi-cracks at different damage scenarios. The proposed stiffness reduction index shows good sensitivity in detecting single and multi-cracks. The proposed anomalies elimination procedure helps to remove the anomalies along the beam length. Also, the adoption of the proposed weighting method averaging procedure and normalization procedure help to draw the overall crack pattern based on the adopted set of modes.

이산 전력시스템에서 TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석 (Sensitivity Analysis of Oscillation Modes Occurred by Periodic Switching Operations of TCSC in Discrete Power Systems)

  • 김덕영
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.162-168
    • /
    • 2008
  • 본 논문에서는 RCF 해석법을 싸이리스터 제어 FACTS 설비인 TCSC를 포함하는 전력계통의 미소신호안정도 해석에 적용하였다. 이산시스템에서 RCF 해석법에 기초한 고유치 감도해석 알고리즘을 제시하고 TCSC를 포함하는 전력계통에 적용하였다. 사례연구를 통해서 RCF 해석법이 TCSC의 주기적 스위칭 동작에 의해 발생하는 진동모드의 변화와 새로이 발생되는 불안정 진동모드의 정확한 해석에 매우 유용한 해석방법임을 보였다. 또한 RCF 해석법에 기초한 고유치 감도해석 방법을 사용하여 이산시스템에서 주기적 스위칭 동작에 의해 발생되는 중요 진동모드에 대한 제어기 감도계수를 정확히 구할 수 있음을 보였다. 이러한 사례연구 결과는 기존의 연속시스템에서의 상태방정식에 의한 해석결과와 크게 다른 것이며, RCF 해석법이 TCSC와 같이 주기적 스위칭 동작을 하는 설비를 포함하는 이산전력계통의 해석에 매우 유용한 방법임을 보여준다.

민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측 (Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector)

  • 이동현;김병옥;전병찬;서준호;강신훈;김세룡
    • Tribology and Lubricants
    • /
    • 제40권2호
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.