• Title/Summary/Keyword: mode of bars

Search Result 129, Processing Time 0.027 seconds

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Effect of reinforcing details on seismic behavior of RC exterior wide beam-column joint

  • Jae Hyun Kim;Seung-Ho Choi;Sun-Jin Han;Hoseong Jeong;Jae-Yeon Lee;Kang Su Kim
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.283-296
    • /
    • 2023
  • This paper presents experimental and numerical studies of seismic performance on reinforced concrete (RC) wide beam (WB) joints. Two RC-WB joint specimens and one conventional RC joint specimen were fabricated using the reinforcing details of longitudinal reinforcing bars in a beam as a variable, and quasi-static cyclic loading tests were performed. The results were used to compare and analyze the load-drift ratio relationship, failure mode, and seismic performance of the specimens quantitatively. In addition, a finite element (FE) analysis of the RC-WB joint was conducted, and the rationality of the FE model was validated by comparing it with the test results. Based on the FE model, a parametric study was conducted, where the ratio of longitudinal reinforcing bars placed on the outer and inner parts of the joint (𝜌ex/𝜌in) was a key variable. The results showed that, in the RC-WB joint, an increase of 𝜌ex/𝜌in leads to more severe damage to concrete, which reduces the seismic performance of the RC-WB joints.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

An innovative system to increase the longitudinal shear capacity of composite slabs

  • Simoes, Rui;Pereira, Miguel
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.509-525
    • /
    • 2020
  • Steel-concrete composite slabs with profiled steel sheeting are widely used in the execution of floors in steel and composite buildings. The rapid construction process, the elimination of conventional replaceable shuttering and the reduction of temporary support are, in general, considered the main advantages of this structural system. In slabs with the spans currently used, the longitudinal shear resistance commonly provided by the embossments along the steel sheet tends to be the governing design mode. This paper presents an innovative reinforcing system that increases the longitudinal shear capacity of composite slabs. The system is constituted by a set of transversal reinforcing bars crossing longitudinal stiffeners executed along the upper flanges of the steel sheet profiles. This type of reinforcement takes advantage of the high bending resistance of the composite slabs and increases the slab's ductility. Two experimental programmes were carried out: a small-scale test programme - to study the resistance provided by the reinforcing system in detail - and a full-scale test programme to test simply supported and continuous composite slabs - to assess the efficacy of the proposed reinforcing system on the global behaviour of the slabs. Based on the results of the small-scale tests, an equation to predict the resistance provided by the proposed reinforcing system was established. The present study concludes that the resistance and the ductility of composite slabs using the reinforcing system proposed here are significantly increased.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.

Numerical parametric analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • This paper presents the parametric numerical analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips. The effects of several factors on failure modes and ultimate bearing capacity of the purlins are studied, including setup of anti-sag bar, purlin type, sheet thickness and connection type et al. A simplified design formula is proposed for predicting the ultimate bearing capacity of purlins. Results show that setting the anti-sag bars can improve the ultimate bearing capacity and change the failure modes of C purlins significantly. The failure modes and ultimate bearing capacity of C purlins are significantly different from those of Z purlins, in the purlin-sheet roof connected by standing seam clips. Setting the anti-sag bars near the lower flange is more favorable for increasing the ultimate bearing capacity of purlins. The ultimate bearing capacity of C purlins increases slightly with sheet thickness increasing from 0.6 mm to 0.8 mm. The ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips is always higher than those by self-drilling screws. The predictions of the proposed design formulas are relatively in good agreement with those of EN 1993-1-3: 2006, compared with GB 50018-2002.

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.