• 제목/요약/키워드: mode frequency

검색결과 4,293건 처리시간 0.031초

Sub-threshold MOSFET을 이용한 전류모드 회로 설계 (Current-Mode Circuit Design using Sub-threshold MOSFET)

  • 조승일;여성대;이경량;김성권
    • 한국위성정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.10-14
    • /
    • 2013
  • 본 논문에서는 저전력 기술인 DVFS (Dynamic Voltage Frequency Scaling) 응용을 위하여, 동작주파수의 변화에도 소비전력이 일정한 특성을 갖는 전류모드 회로를 적용함에 있어서, 저속 동작에서 소비전력이 과다한 전류모드 회로의 문제점을 전류모드 회로에서 sub-threshold 영역 동작의 MOSFET을 적용함으로써 소비전력을 최소화하는 설계기술을 소개한다. 회로설계는 MOSFET BSIM 3모델을 사용하였으며, 시뮬레이션한 결과, strong-inversion 동작일 때 소비전력은 $900{\mu}W$이었으나, sub-threshold 영역으로 동작하였을 때, 소비전력이 $18.98{\mu}W$가 되어, 98 %의 소비전력의 절감효과가 있음을 확인하였다.

회전하는 유체이송 외팔 파이프의 동특성 해석 (The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성 (3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle)

  • 김용우;남진영
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

Empirical mode decomposition based on Fourier transform and band-pass filter

  • Chen, Zheng-Shou;Rhee, Shin Hyung;Liu, Gui-Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.939-951
    • /
    • 2019
  • A novel empirical mode decomposition strategy based on Fourier transform and band-pass filter techniques, contributing to efficient instantaneous vibration analyses, is developed in this study. Two key improvements are proposed. The first is associated with the adoption of a band-pass filter technique for intrinsic mode function sifting. The primary characteristic of decomposed components is that their bandwidths do not overlap in the frequency domain. The second improvement concerns an attempt to design narrowband constraints as the essential requirements for intrinsic mode function to make it physically meaningful. Because all decomposed components are generated with respect to their intrinsic narrow bandwidth and strict sifting from high to low frequencies successively, they are orthogonal to each other and are thus suitable for an instantaneous frequency analysis. The direct Hilbert spectrum is employed to illustrate the instantaneous time-frequency-energy distribution. Commendable agreement between the illustrations of the proposed direct Hilbert spectrum and the traditional Fourier spectrum was observed. This method provides robust identifications of vibration modes embedded in vibration processes, deemed to be an efficient means to obtain valuable instantaneous information.

유체 연성이 작용하는 동축 원통형 쉘의 고유진동 (The Natural Frequency of a Coaxial Cylindrical Shell with Fluid Coupling)

  • 안병준;정경훈;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.975-979
    • /
    • 1994
  • The experimental and finite element studies of a coaxial cylindrical shell filled with liquid in the annular gap were performed to understand its vibration characteristics. Finite element analysis was achieved by using ANSYS code. Form the investigation of the changing trend of natural frequencies for the change of annular gap we know that the natural frequency of the coaxial cylindrical shell varies according to the mode shape. that is, in case of in-phase mode the natural frequency decrease as annular gap increase, but in case of out-of-phase mode the natural frequency increase. Finite element analysis results show the excellent agreement with the experimental results both in air and in water case, so that analysis on other cases with be possible without experiment.

  • PDF

독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계 (Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

Application of Hilbert-Huang transform for evaluation of vibration characteristics of plastic pipes using piezoelectric sensors

  • Cheraghi, N.;Riley, M.J.;Taherit, F.
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.653-674
    • /
    • 2007
  • This paper discusses the application of piezoelectric sensors used for evaluation of damping ratio of PVC plastics. The development of the mathematical formulation based on the Empirical Mode Decomposition for calculating the damping coefficient and natural frequency of the system is presented. A systematic experimental and analytical investigation was also carried out to demonstrate the integrity of several methods commonly used to evaluate the damping of materials based on a single degree freedom formulation. The influence of the sensors' location was also investigated. Besides the commonly used methods, a newly emerging time-frequency method, namely the Empirical Mode decomposition, is also employed. Mathematical formulations based on the Hilbert-Huang formulation, and a frequency spacing technique were also developed for establishing the natural frequency and damping ratio based on the output voltage of a single piezoelectric sensor. An experimental investigation was also conducted and the results were compared and verified with Finite Element Analysis (FEA), revealing good agreement.

주파수 체배기를 이용한 이중 모우드 증폭부 설계 (Design of Dual Mode Amplifying Block Using Frequency Doubler)

  • 강성민;최재홍;구경헌
    • 대한전자공학회논문지TC
    • /
    • 제43권1호
    • /
    • pp.127-132
    • /
    • 2006
  • 본 논문은 입력되는 주파수 대역에 따라 증폭기 및 주파수 체배기로 동작하도록 설계하여, 무선 LAN의 다양한 표준인 802.11a/b/g의 주파수 대역을 만족하는 이중 모우드 증폭기를 설계하였다. 기존의 이중대역 무선 LAM의 경우 동작주파수에 따라 별도의 증폭기를 구성하는 형태였으나, 본 연구에서는 서로 다른 바이어스 조건에 따라 802.11b/g 신호에 대해서는 증폭기로서 동작하고, 802.11a 신호에 대해서는 주파수 체배기로 동작하여 하나의 능동회로를 이용하여 각기 다른 표준의 주파수 대역을 증폭할 수 있도록 하였다. 증폭기로 동작할 경우 약 13dB의 이득과 약 17dBm의 PldB을 얻었으며, 2차 고조파는 약 -37dBc 이하로 억압되었다. 주파수 체배기로 동작할 경우 약 3.3dB의 체배 이득과 약 7.3dBm의 최대 전력을 얻었으며, 3차 고조파는 약 -50dBr 이하로 억압되었다.

Slip-Mode Frequency Shift 단독운전 검출 기법의 정상상태 전력 품질 개선 (Design of Modified Slip-Mode Frequency Shift Islanding Detection Method for Power Quality Improvement)

  • 김동욱;김성민
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.539-547
    • /
    • 2018
  • 계통 연계형 인버터는 단독운전 조건에서 반드시 전력 공급을 차단해야 한다. 이러한 이유로 분산 발전 시스템은 단독운전을 검출 기능을 반드시 가지고 있어야 한다. 분산 발전용 인버터에 적용되는 일반적인 방법 중에는 Slip-Mode frequency Shift (SMS) 단독운전 검출 기법이 있다. SMS 기법은 계통 전압의 주파수에 따라 무효 전력을 공급하여 단독운전 조건에서 계통 주파수를 허용 범위 밖으로 이동시키는 방법이다. SMS 기법은 안정적으로 단독운전을 검출할 수 있으며, 계통 전류에 고주파를 인가하지 않는다는 장점이 있으나, 무효 전류를 인가하기 때문에 계통 역률이 나빠져서 전력 품질의 저하를 가져온다. 본 논문에서는 계통 전원이 연결되어 있는 정상 조건에서 전력 품질 저하가 없는 수정된 SMS 기법을 제안한다. 600W 단상 인버터 실험을 통해 제안된 방법의 유효성을 검증한다.

마이크로그리드에서의 데드 밴드와 회복 제어를 적용한 배터리 에너지저장시스템 주파수 제어 (Frequency Control of Battery Energy Storage System with a Deadband and Restoration Control in Microgrid)

  • 이학주;최진영;최종찬;원동준;채우규;박중성
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1584-1589
    • /
    • 2012
  • The grid-interconnected microgrid can be able to operate with and without the utility microgrid to supply electricity. when the microgrid operates in grid-connected mode, the frequency of the microgrid synchronizes with the system frequency. In this case, the frequency of the microgrid has small variation which is able to change the output of distributed generation with a droop controller. Thus, the small variation of frequency can make the distributed generation generate unnecessary electricity consistently. In this paper, we propose a frequency droop control with a dead band so as to prevent the distributed generations from generating unnecessary output while in grid-interconnected mode. In addition, a distributed generation can have a restoration control to restore the frequency changed by a droop control as a rated frequency. Also, we state the problem of restoration control with a dead band, and propose its solution when the microgrid operates in stand alone mode. We simulate the proposed droop control using PSCAD/EMTDC to verify the validity of the control.