• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.029 seconds

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Seismic Analysis of 3D-Truss by Response Spectrum (응답스펙트럼에 의한 트러스 구조물의 내진해석)

  • 안주옥;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

Analysis of Resonance Scattering Characteristics by Multi-layered Dielectric Gratings (다층 유전체 격자구조에 의한 공진 산란특성의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.231-236
    • /
    • 2017
  • The space harmonics generated by a plane-wave incident upon a multi-layered dielectric grating can undergo strong resonance scattering variations known as GMR(guided-mode resonance). To clarify these effects, we examine the field propagation and dispersion curve inside the grating region by using a rigorous equivalent transmission-line theory(RETT). The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, we confirm and generalize previous research that has occurred GMR effect associated with the free-resonant character of leaky waves at multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TM mode.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (I) - Experimental Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(I) - 실험적 접근 -)

  • Park, Won-Hee;Kim, Dong-Hyeon;Chang, Hee-Chul;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.9-14
    • /
    • 2006
  • In this study boundary velocity which is one of the important boundary conditions for numerical simulation for subway station on fire are experimentally obtained. The tests were conducted according to its operating mode of the ventilation systems in the platform: smoke extraction ventilation mode in occurrence of fire and normal ventilation mode for air conditioning. Velocities are measured at various points on the platform. To examine smoke extraction and air supply capacity in the platform level, air velocities were checked on opening vents. Numerical analysis under normal ventilation mode without fire is conducted by using measured boundary conditions, and the numerical results are compared with the measured velocities on the platform.

Dynamic Mode Analysis of Thin Walled Closed Section Beams under Warping Conditions (Warping 조건하에서 박판 폐단면 보의 동적 모드 해석)

  • Yu, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.367-374
    • /
    • 2012
  • A dynamic simulation and test of frame with thin walled closed section beams considering warping conditions have been performed. When a beam is subjected under torsional moment, the cross section will deform an warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. This paper presents that an warping restraint factor in finite element model effects the behavior of beam deformation and dynamic mode shape. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame.

Stress and Coping Strategies of Breast Cancer Patients and their Spouses (유방암 환자와 배우자의 스트레스와 대처방식)

  • Cha, Kyeong-Sook;Yoo, Yang-Sook;Cho, Ok-Hee
    • Asian Oncology Nursing
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Purpose: The purpose of this study was to identify the stress and the coping strategies in breast cancer patients and their spouses. Methods: The stress level was measured by the Stress Questionnaire of Andersson & Albertsson (2000). The coping strategies were measured by the modified Lazarus & Folkman's Ways of Coping Questionnaire. The data were collected by a survey sampling 49 couples from one hospital in Seoul. The data were analyzed by t-test, ANOVA and paired t-test. Results: There was no significant differences between the stress level of breast cancer patients and their spouses. The problem-focused coping of breast cancer patients was significant higher than their spouses. The cancer patients and their spouses used problem-focused coping mode more than emotion-focused coping mode. In the problem-focused coping mode, breast cancer patients used two coping strategies - 'seeking information' and 'cognitive reconstruction' - significantly more than their spouses. In emotion-focused coping mode, the breast cancer patients used one coping strategy, 'emotional expression', significantly more than the their spouses. Conclusion: Further study needs to attempt to develop nursing interventions that could improve positive coping strategies.

The Influence of Microstructures on the Change of Monotonic Tensile Fracture Mode in Al-Li-Cu-Zr Alloy with Ageing (Al-Li-Cu-Zr합금의 시효에 따른 인장파괴모드변화에 미치는 미세조직의 영향)

  • Chung, D.S.;Lee, S.J.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.212-218
    • /
    • 1996
  • To clarify the influence of precipitation microstructure and inclusion on the monotonic tensile fracture behaviors in 2090 alloy aged at $180^{\circ}C$, the detailed measurement of hardness, tensile strength, elongation and the observation of scanning electron micrography, transmision electron micrography have been carried out. The transgranular shear ductile fracture has been observed in specimen quenched after solution treatment at $500^{\circ}C$ for 45min. While the under-aged specimen was fractured in both transgranular shear ductile and intergranular fracture mode, the fracture mode of peak-aged and over-aged alloy was predominantly intergranular fracture. The fracture behavior of each ageing condition was influenced by the change of precipitation microstructural features. In the case of peak-aged and over-aged alloys, the coarse and heterogeneous slip band caused by both shearable nature of the ${\delta}^{\prime}(Al_3Li)$ precipitates and PFZ along the high angle grain boundary aid the localization of deformation, resulting in low energy intergranular fracture. It was also estimated that the fractured T-type intermetallic phases (inclusion) and the equilibrium ${\delta}$(AlLi) phases which were formed at grain boundaries palyed an important role in promoting intergranular fracture mode.

  • PDF

Identification on the Differentiating Characteristics of Determinant Factors on Commuting Mode Choice for the Single-Person Household Compared to the Multi-Person Household (다인 가구와의 비교를 통한 1인 가구의 통근수단 선택 결정요인의 차별적 특성의 파악)

  • Sung, Hyungun
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.1-14
    • /
    • 2020
  • The aim of this study is to empirically identify the differentiating characteristics of determinant factors on sing-person households' commuting mode choice compared to multi-person households' one in order to establish the customized police directions to decrease private car use in commuting. While the study use the 2% sample survey data on the population and housing in 2015, it employ multinomial logit models on relative choice probability of such alternative commuting modes as bus, subway or rail, and walking, rather than driving. As potential determinant factors, the study employs demographic, socio-economic, and housing and residential one for both models of single-person and multi-person households. The study finds that the behavior of commuting mode choice has distinctive difference by gender, marriage status, physical activity constraint, job type, residential period in current housing of the single-person household's workers compared to the multi-person households' ones. Based on the findings, the study deduce ten commuting policy directions customized for the single-person household.