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Dynamic Mode Analysis of Thin Walled Closed Section Beams
under Warping Conditions
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Abstract

A dynamic simulation and test of frame with thin walled closed section beams considering warping
conditions have been performed. When a beam is subjected under torsional moment, the cross section will
deform an warping as well as twist. For some thin-walled sections warping will be large, and accompanying
warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam
in torsion. This paper presents that an warping restraint factor in finite element model effects the behavior
of beam deformation and dynamic mode shape. The computer modelling of frame is discussed in linear beam
element model and linear thin shell element model, also presents a correlation between computer predicted and

actual experimental results for static deflection, natural frequencies and mode shapes of frame.

Key words : mode analysis(3/29-0%), warping restraint factor(SFE 7235, beam element(3-24), thin shell elenent(2}2E22)

L. Introduction establish the secure frame having high torsional strength

as well as bending strength in the viewpoint of safety

A structure welded in sub-frames with closed section and cost advantages having thin and light frame
beams are mostly used in automotive frames demanding materials. ~ Generally in simple beam theory it is
high strength and stiffness. So it is great important to assumed that shear center axis and torsional center axis
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are identical. When a beam is subjected to a torsional
moment and the cross section is not symmetrical, the
cross section will deform out of plane, which is called
warping, as well as twist.[1]-[4]. For the modal and
stress analysis of frames which closed section cross
members, the compatibility of any warping
displacements in the cross member and rate of twist in
the side member has to be ensured at the joints. Even
when warping free sections are used, any non-zero
twisting strain of the beam to which they are joined at
a node has to be taken account. The additional
displacements arising from the deformation of the cross
section can be added to the displacements assumed for
open sections and lateral bimoment added to internal
loads. The load-displacements for torsion in closed
sections are more complex in applying to all closed
section.

A beam finite element model with different warping
restraint factors are discussed comparing test results.[5].
In this paper through use of structural dynamic
behaviour comparing thin shell finite element and beam
element model, comprehensive and detailed structural
description of technique are described. Also presented is
a correlation between computer codes predicted results
and actual test results for static results,  natural

frequencies and mode shapes of frame.

II. Dynamic Mode Analysis

2—1 Mode Analysis

We makes use of a mixed mode of solution for the
analysis of structural systems. A direct stiffness matrix
approach is employed for the solution of the system
joint displacements. The system matrix equation can be

written as,

F=[(K)— & (M)]X 1)

Sh=galists] =5 A|M16d A2&E 20124 49
or equivalently
F=[D|X )

where, £ : column matrix of external forces applied
to the joints of the structure

K : square static stiffness matrix

M : diagonal mass matrix

w : harmonic frequency of the excitation force

X : column matrix of displacements occuring at the
joints of the structures

D : dynamic stiffness matrix

To formulate the dynamic stiffness for each span
which is made up of number of span segments and
lumped masses, a recurrence matrix or transfer matrix
approach is used. The recurrence matrix method is

described by the following matrix equation,
Zig = [m, Z Q)

where, Z ,,, Z : state vectors at stations ¢+ 1 and
i along the span beams. Stations are designated at the
segment ends.

[U], is the transfer matrix which relates the state
vector at station ¢+1 to that at station ¢ as a function
of excitation frequency of the structure.

As many times as the number of segments existing
for a given span, equation (3) can be recognized to yield

a dynamic stiffness matrix for the entire span.

F _ Ky K| | X
Al o

where, F), F, : force vectors for the fore and after
end span joints, Kj;, A}y, Kopy K @ elements of the
partitioned stiffness matrix, X,X;, : displacements

vectors for the fore and after end span joints

2—2 Warping Restraint
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When a beam is subjected to a torsional moment and

the cross section is not circular, the cross section will

deform out of plane, which is called warp w, as well as

twist © in Fig. 1. In Saint Venant torsionl) this warping

is free to occur and thus the equation for torsion can be

written as,
O(r) = 2L (5)
or % = G—I;( (6)
where  © : angle of twist
T : applied torque

x : distance along the beam
K : torsional constant
G : shear modulus

a8 1. v|SH stSstel Ad che

Fig. 1. Channel section under torsional load

For the compact solid type cross sections such as
rectangles, the amount of warping is small and it has
little effect on the torsional behavior. However, for some
thin-walled cross sections such as channels and wide
flange sections the warping will be quiet large. If the
warping is not restrained, then equations (5) and (6) are
still valid. Even though in the real world structures, the
warping will normally be restrained to some degree

since the end of the beam will be connected to other
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beams or other structural points. This restraint will
induce axial and shear stresses in the beam and reduce
the amount of twist of the beam which in effect stiffens
the beam in torsion.

When the effects of warping restraint are included,
the equation for torsion is

de o _

g P =7 )
where £ : modulus of elasticity

Ir : warping constant
The general solution of this equations is,

T .
O = Gf( + A, + A,sinh Bz + A,coshfz ®)
_ GK TC - 1 £

where, =% ST T 9)

Applying these boundary conditions, and assuming
that the angle of twist is zero at = =0 and that the

warping is zero at both end, we get the equation,

1

_ L sinhBx + 3

7 tanh% (cosfBz —1)]

(10)

Substituting = = L into this equation to get the angle

of twist at end we get,

BL—2 tanhﬁz—L )

(
O(L) = G—rz (1D)

If we try to duplicate this result with equation(5) by
replacing the torsional constant A by an effective
torsional constant &,, we get the following expression

for the effective torsional constant,

BL
(BL—2tanh

K=K 7L,
2
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Looking at equation (12), we see that when
BL> 100, the effective torsional constant is essentially
the same as the nominal torsional constant. From this we

can say that warping is insignificant when

KI*
1x10° (13)

If we work in mm, the warping constant would have
to just be greater that the torsional constant. In most real
structures, the torsional warping will not be fully
restrained since the end of the beam is connected to a
flexible beam not a perfectly rigid wall. The type of
joint, welded or bolted, will also effect the degree of
warping restraint. By defining a warping restraint factor,
we can control the amount of torsional stiffening that
occurs as the actual torsional constant used will be an
interpolated value between nominal and the effective

torsional constant, that is,
K., =fK,+(1-f)K (14)

00<f<1.0 (15)

The problem occurs when a beam is broken up into
several segments for reasons due to intersecting beams,
for example, when there are slight bends in the beam.
The warping restraint is only at the far ends of the
beam, and the restraint at the middle points will be less.
Thus it is not valid to model these beam segments with

the same warping restraint.
2—3 Modal Test

To determine the dynamic characteristics of frame,
frequency rtesponse was measured under free-free
supporting condition. Each natural frequency represents
specific patterns and deformation patterns of frame,
which is called mode shape, is determined by adjusting
oscillator frequency with natural frequency of frame.

This deformed data is read by A-D converter and mode

sh=akel sty =32 Al16 A2% 20124 4€

shapes are plotted. The overall test procedure was
processed according to general modal test procedure as
belows in Fig. 2.

Mounting

- Determining test location and direction ~ (DOF'S)
- Mounting structure(free or fixed)

- Choosing and adjusting excitation points
- Analyzer / Transducer

- Checking measurement procedure

&

Measuring data

4

Evaluating items

- Natural frequency

- Mode shape
4

Plotting mode shapes

4

Evaluating mode items

J8 2. ZE AIE =M
Fig. 2. The set up for modal test procedure

The body mounting points were chosen as excitation
points and impacted in vertical and horizontal directions.
The frame were free-free condition and measured at the
fifty-one frame points. The modal test measurement

System set-up is represented in Fig. 3.

m o

O—— - Impact
Accelerometer l Hammer

Charge Charge
Amplifer(CH1) Amplifer(CH2)

2 CH FFT Analyzer

| | GP-IB Interface

Computer(STAR)

O3 3. ZE Alg ZR|
Fig. 3. Modal Test Measurement System Set-Up
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2—4 Analysis Model and Displacement test

For comparing warping restraint effect, automotive
frame was modelled using finite element method. In
beam element model, cross member and side rail were
connected node to node linear beam elements in Fig.
4(a), and cross member and side rail were connected
rigid element model in Fig. 4(b). Also entire frame was
modelled with linear thin shell element model. The
results were compared with test results using UPM-60
displacements equipment.

(a) A8 B g4 wd
(a) Linear Beam Element Model

(b) My vt @4 ZH
(b) Linear Thin Shell Element Model
J8 4. XS4t Zyele] et 4 =

Fig. 4. Finite Element Model of Automotive Frame

a8 5 Zael HE Al
Fig. 5. Displacement Test of Frame
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II. Results and Discussion

A static test was performed in which the frame was
clamped at all four mounting bracket points, and loads
were imposed to cause the frame twist and bend in both
the vertical and horizontal planes. By predicting with
computer analysis and test result, warping restraint
factor(w.r.f.) effect was examined to torsion and bending
deformation of frame in Fig. 6. In a short term, it can
be said that linear beam element model is more effective
that linear thin shell element model to measure the
deformation of frame. In Table 1 the result of beam
element model with w.r.f. is 0.35 is more closed to the
test result than that of beam element model with w.r.f.
is 1 in bending test. The close correlation in bending
results than in torsion results explains axial stress due to
torsion is of a greater magnitude than that due to
bending. For further investigation we may compare the
correlation with modal test.

I Linear Beam Element(wrf=0)
[ Linear Beam Element(wrf=0.35)
Il Linear Beam Element(wrf=1)
[ Linear Thin Shell Element

[ Linear Beam with rigid connection
[ Test result

Torsion(RH)

Bending(LH) Bending(RH)

Displacement(mm)

Torsion(LH)

J8 6. = e| He ZAuf d|u
Fig. 6. Comparison of displacement results of
frame

E 1. =z AT sifAol My At
Table 1. Displacement results of frame test and
analysis.

Model | Linear Beam Element | Linear
Model Thin Shell| UPM60
Test ) . . Element | Test
Condition w0 |wrf035 \wrf1 Model
Torsion |LH | -428| -427 |-427| -368 -499
Test
(mm) RH | 428 427 427 441 5.14
Bending |LH | -147 | -147 |-147| -1 -1.46
Test
(mm) RH | -147| -147 |-147| -1H4 -153
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Fig. 7 ~ Fig. 15 shows the computer analysis results
of dynamic modal analysis. The peak deflections
predicted by the analysis model compares within the
standard engineering accuracy. A comparison of the
analysis predicted to the actual (experimentally obtained)
natural frequencies of the frame is given in Fig. 16 and
Fig. 17. Fig. 16 and Fig. 17 indicated natural frequencies
correlation for modes are well accuracy of engineering
standard error. However higher the modes, higher the
correlation error. The third torsion bending shows
correlation of approximately 21%. A  possible
explanation for the lesser degree of correlation is found
in studying the internal loading of this mode.

It is most easily visualized as the bending of an beam
with the frame side-rails acting as the flanges and the
cross-member acting as the web. For bending of an
beam the web acts as a shear panel in plane loading in
transmitting the bending load from one flange to the
other. For the frame, this in plane loading is taken
axially through the cross-members at six discrete
locations rather than across a continuous plate. High
localized loading occurs in cross-member to side-rail
connection, and for the thin walled cross sections this
loading can result in significant local distortion in the
members. A beam representation of the member does
not account for these added deformation, and model
predicts this natural frequency higher than actual found
in the test, as seen in Fig. 16. This frame joint
deformation, joint flexibilities (or joint stiffness) and
joint slippage can significantly affect mode dynamic
behaviour of frame mode shape.

A number of structural analysis computer codes are
available to model frame elements, and the results are
similar tendencies as shown in Fig. 18.

28 7. 4% bl§Y 2E

Fig. 7. 1st torsion vertical mode
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Fig. 8. 1st bending vertical mode

18 9. 2 +% b|§Y BE

Fig. 9. 2nd torsion vertical mode

28 10, 2 4% 28 25

Fig. 10 2nd bending vertical mode

38 11,3 8 B|§Y BE

Fig. 11 3rd torsion vertical mode

a8 12. 1 28 Zd 2=

Fig. 12 1st lateral bending mode
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—m— Test result 2

(—e— Beam element(wrf=1) /
100 »

= Beam element(wrf=0.35) v
—¥— Thin shell element
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Fig. 13 2nd lateral bending mode 40 1

T T T T
1st Bending 2nd Bending 3rd Bedning 4th Bending
Lateral Mode
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oot +H2E Bl

Natural frequencies(H
! ! !
\\

Fig. 17 Comparison of lateral mode natural
frequencies with three different
models and test
a8 14, 6 4 =28 2E
Fig. 14 6th lateral bending mode

1607 | —x— Test result

—#— PAFEC Code
—e— ABAQUS BEAM ELEMENT
—a4— CAEDS BEAM ELEMENT

—o— CAEDS THIN SHELL

140

120 ~

W\

100 A

604 ]
40 1/0/ i
j.E‘l 15. 7 -|—-""4 —;r"'ol 2Cc tst Torsion 1t Bendlng 2nd Torsion 2nd Bendlng 3rd Torsion
Vertical Mode

8 18, AFEH ZE 2 Ao IRFI v

Fig. 18 Comparison of natural frequencies in

Natural frequencies(Hz)

Fig. 15 7th lateral bending mode

7] _a— Testresult ] different computer codes with test
1404 | —e— Beam element(wrf=1) 4
N —a— Beam element(wrf=0.35)
L 01|« Thin shell element /i ]
] V. Conclusion
g 80 4 -
g 60 o [ ] T
= . . .
2 40 @3/ 1 In this study a method for efficient and accurate
e . . . ] analysis of frame has been established. The warping
1sttorsion 1stbending 2nd torsion 2nd bending 3rd torsion . .
Vertical Mode conditions of beam elements was discussed. The beam
a2l 16, M7HK| TR T} AlEe| TgFaio| clements method analysis was well matched with

tiet +H2E Bl experimental results in the frame displacement test. In
Fig. 16 Comparison of vertical mode natural
frequencies with three different

models and test

the displacement test results, the linear beam element
results were well matched than thin shell element model
with experimental result. However it is not valid to
model beam segments with the same warping restraint.
In a long beam, the warping restraint in the middle
segment might actually be zero.

On the contrary natural frequency of the thin shell
element model is well matched with the test result. It

can be the influence of joint flexibilities of the frame,
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so it i3 more desirable to use thin shell element model
in dynamic modal test. In dynamic modal analysis the
analysis predicted results well matched with test results.
The frame was excited vertically and the resulting
vertical motion measured at a point near the front of the
frame on the left side-rail. The close correlation obtained
over the entire frequency range.

Further study is indicated optimizing mounting engine
bracket location with open and closed sectioned beam
applied torsional loading using the result of dynamic
mode of frame considering warping restraint factor of
beam properties. The computer program appears to be

promising but results need test results guide.
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