• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.034 seconds

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing;Zhen Li;Enrui Feng;Xiaomin Wang;Hongguang Kang;Yiyong Wang;Hui Jin;Jidong Li
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2023
  • The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

The Impact of Entrepreneurial Education on Entrepreneurial Intention During the COVID-19 Pandemic: An Empirical Study from Pakistan

  • SOHU, Jan Muhammad;JUNEJO, Ikramuddin;KHUWAJA, Faiz Muhammad;QURESHI, Naveed Akhtar;DAKHAN, Sarfraz Ahmed
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.95-103
    • /
    • 2022
  • This study aimed to find the mediating impact of entrepreneurial education during COVID-19 on entrepreneurial intention among university students from major cities of Pakistan. Majority of businesses shifted to online from offline mode as a result of COVID-19 pandemic. This created a great opportunity for university students to become entrepreneurs without much investment during COVID-19. Primary data for this study was collected with the help of an adopted questionnaire from previous studies. An online survey was considered appropriate due to the COVID-19 situation in the country. The number of data samples collected from the major cities of Pakistan was 460. The research hypothesis was tested with the help of SmartPLS by using least square structural equation modeling. Findings revealed there is full mediation of entrepreneurial education during COVID-19 between the self-efficacy, subjective norms, and attitude towards entrepreneurship for entrepreneurial intention during COVID-19 among university students. Therefore, the research confirmed the application of the theory of planned behavior among university students in Pakistan with regards to factors such as self-efficacy, subjective norms, attitude towards entrepreneurship and entrepreneurial intention. The present study also concludes that all students regardless of their area of study such as Business and Engineering look forward to become entrepreneurs during COVID-19. The students opting for entrepreneurship had either formal or informal entrepreneurial education during COVID-19.