• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.028 seconds

A Study on the Behavior of Wrinkles in Cup Drawing with Al alloy by FEM (유한요소법에 의한 합금의 용기 성형시 Al 주름의 거동에 관한 연구)

  • Ko D.L.;Jeon C.Y.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1240-1243
    • /
    • 2005
  • The wrinkling in the flange and wall of a part is a predominant failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under $20{\mu}$ in height. In general, the height of wrinkles could be limited under $200{\mu}$ practically. Therefore small BHF can be allowed so that the depth of drawing could be increased. This paper represents the variation of the wrinkles of flange in the part of cup drawing by using aluminium alloy A1050 and A5052. This simulation is used by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis.

  • PDF

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

The Structural Behavior and Performance by Span-to-Depth Ratio in Composite Structure of Sandwish System (셀 형상비에 따른 강.콘크리트 복합구조체의 구조적 거동 및 성능)

  • 정연주;정광회;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.181-192
    • /
    • 2001
  • 이 논문은 샌드위치식 강-콘크리트 복합구조체에서 상하 강판과 격벽으로 구성되는 셀의 형상비가 거동과 성능에 미치는 영향을 다루었다. 이 구조체에서 셀 형상비는 하중전달 메카니즘과 하중분배능력을 변화시킨다. 따라서 셀 형상비에 따라 부재의 응력수준과 하중저항능력이 변화한다. 이 연구에서는 셀 형상비가 이 구조체의 거동과 성능에 미치는 영향을 규명하기 위해, 두 종류의 샌드위치식 복합구조체에 대해 다양한 셀 형상비를 설정하여 비선형 구조해석을 수행하였다. 해석결과로부터 셀 형상비에 따른 하중전달 메카니즘과 부채 응력에서의 차이점을 도출하였으며, 이들 차이점을 바탕으로 셀 형상비가 전단성능, 휨성능, 하중저항성능에 미치는 영향을 분석하였고, 파괴모드와 연성에 미치는 영향에 대해서도 간략히 언급하였다. 연구결과, 셀 형상비가 증가함에 따라 하부 강판과 콘크리트의 응력수준이 낮아지는 결과를 나타내었다. 이것은 각 부재의 유효휨강성과 유효전단강성 증가를 나타내며, 따라서 구조체의 하중저항성능도 향상되는 것으로 판단된다. 특히 셀 형상비의 증가에 따른 성능향상에서 전단성능이 휨성능에 비해 더 큰 효과를 나타내며, 이러한 차이는 파괴모드와 연성에도 영향을 미칠 것으로 판단된다. 즉, 셀 형상비가 증가함에 따라 구조물의 거동 및 파괴모드는 점차적으로 전단에서 휨으로 변화하고, 이에 따라 구조물의 연성도 점차적으로 향상될 것으로 판단된다.

  • PDF

Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning (증기발생기 전열관 감육부의 강도 및 손상평가)

  • Seong, Ki-Yong;Ahn, Seok-Hwan;Yoon, Ja-Moon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing

  • Lima-Guerra, D.J.;Mello, I.;Resende, R.;Silva, R.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • In order to study the capacities of a new occurrence of Brazilian clay samples as partial replacements of cement, a bentonite sample was selected for utilization in the natural and modified forms for present study. The natural bentonite (BBT) was modified by anchorament of 3-aminopropyltrietoxisilane ($BBT_{APS}$) and 3,2-aminoethylaminopropyltrimetoxisilane (BBTAEAPS) in the surface of component minerals of bentonite sample. The original and organo-bentonite samples were characterized by elemental analysis, scanning electron microscopic and textural analyses. The values of micropore area were varying from $7.2m^2g^{-1}$ for the BBT to $12.3m^2g^{-1}$ for the $BBT_{AEAPS}$. The bentonite samples were characterized by the main variable proportion of bentonite in the natural and intercalated forms (2, 5, 10, 15, 20, 25, 30, and 35 % by weight of cement) in the replacement mode whiles the amount of cementations material. The workability, density of fresh concrete, and absorption of water decreased as the substitution of ordinary Portland cement by perceptual of natural and modified bentonite increased. The results reveal that workability decreased with decrease of the amount of natural bentonite in the concrete, same behavior is observed for bentonite functionalized, varying from 49 to 28 mm. The energetic influence of the interaction of calcium nitrate in the structure of blends was determined through the calorimetric titration procedure.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Wearable Personal Network Based on Fabric Serial Bus Using Electrically Conductive Yarn

  • Lee, Hyung-Sun;Park, Choong-Bum;Noh, Kyoung-Ju;SunWoo, John;Choi, Hoon;Cho, Il-Yeon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.713-721
    • /
    • 2010
  • E-textile technology has earned a great deal of interest in many fields; however, existing wearable network protocols are not optimized for use with conductive yarn. In this paper, some of the basic properties of conductive textiles and requirements on wearable personal area networks (PANs) are reviewed. Then, we present a wearable personal network (WPN), which is a four-layered wearable PAN using bus topology. We have designed the WPN to be a lightweight protocol to work with a variety of microcontrollers. The profile layer is provided to make the application development process easy. The data link layer exchanges frames in a master-slave manner in either the reliable or best-effort mode. The lower part of the data link layer and the physical layer of WPN are made of a fabric serial-bus interface which is capable of measuring bus signal properties and adapting to medium variation. After a formal verification of operation and performances of WPN, we implemented WPN communication modules (WCMs) on small flexible printed circuit boards. In order to demonstrate the behavior of our WPN on a textile, we designed a WPN tutorial shirt prototype using implemented WCMs and conductive yarn.

Implementation of Autonomous Intrusion Analysis Agent(AIAA) and Tool for using Intruder Retrace (인터넷 해킹피해 시스템자동분석에이젼트(AIAA) 및 침입자 역추적 지원도구 구현)

  • Im, Chae-Ho;Won, Yu-Heon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11S
    • /
    • pp.3410-3419
    • /
    • 1999
  • Autonomous Intrusion Analysis Agent(AIAA) is Incident Response Team staff's tool that scans, analyses, reports and alerts the traces of intrusion based on system logs and intruder's backdoors inside compromised system by IR staff after security incident is reported to the IR team. AIAA is intelligent to recognize to check out who is intruder from all the user accounts and to report the suspected candidates to the master control system in IR team. IR staff who controls AIAA with master system can pick up an intruder from the candidates reported by AIAA agent and review all related summary reports and details including source host's mane, finger information, all illegal behavior and so on. AIAA is moved to compromised system by the staff to investigate the signature of intrusion along the trace of victim hosts and it is also operated in secret mode to detect the further intrusion. AIAA is alive in all victim systems until the incident is closed and IR staff can control AIAA operation and dialogue with AIAA agent in Web interface.

  • PDF

Effects of high temperatures and hygrothermals on the collapse characteristics of CFRP thin-walled laminates (고온 .senter dot. 고습환경이 CFRP 적층 원통부재의 압궤특성에 미치는 영향)

  • 곽훈이;김정호;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.650-654
    • /
    • 1995
  • In this study, in order to measure energy-absorbing charactistics in collapse test of CFRP thin-walled laminates and interpretate the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angel is observed and collapse characteristics is compared with the influence of high temperatures and hygrothermals. Especially, we supposed to clearly understand reationship between collapse characteristics in proportion to the variety of orientation angel and moisture absorbing. The value of the maximum loading, mean loading,rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurement lower than in static collapse test regarding compared with collapse characteristics conformity with the variety of the CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same and the biggest amount of energy is shown in the CFRP circular laminates with orientation angel of 15 .deg.. Therefore, in the case of use to CFRP circular laminates with axisymmetric mode, CFRP thin-walled structal members with orientation angel of 10 .deg. , 15 . deg. are generally useful.

  • PDF