• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.234 seconds

The Effect of Structural Models(Membrane or Plate) on the Modal Model Method (구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

Seismic Performance Evaluation of Tube Systems with Buckling Restrained Braces (비좌굴 가새가 설치된 튜브 시스템의 내진성능 평가)

  • Yang, Jung-Ho;Lee, Joon-Ho;Kim, Jin-Koo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.191-197
    • /
    • 2006
  • In this paper 35- and 72-story tube system and trussed tube system were designed and their seismic performances were evaluated by nonlinear static analysis. According to the analysis results, the tube system structures retained high stiffness and strength; however they showed brittle failure mode due to the yielding of columns. In the case of trussed tube system, columns in the side-side buckled first followed by the buckling of the braces. When buckling-restrained braces were applied, plastic hinges formed in the lower stories gradually spreads to the higher stories, resulting in ductile behavior.

  • PDF

A Regional Comparative Study on the Commuter Mode Choice Behavior -Case of Seoul and llsan New Town- (출근통행 교통수단 선택행태의 지역간 비교연구 -서울과 일산신도시를 중심으로-)

  • 조중래;김채만
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.75-88
    • /
    • 1998
  • 서울과 일산 신도시의 출근통행 교통수단 선택모형을 구축하고, 두 도시간 수단선택형태를 분석.비교하였다. 분석을 위한 자료로는 1996년 서울시에서 수행한 가구통행실태조사자료를 이용하였으며, 수단선택모형으로는 다항로짓모형을 사용하였다. 두 지역 출근통행 수단선택모형의 모형구조상의 차이 및 모형의 지역간 이전가능성을 분석하였고, 출근통행의 시간가치 및 탄력성을 분석하고 비교하였다. 통계적 검증의 결과 출근통행의 수단선택에 있어서, 모형구조적 측면에서나 선택행태적 측면에서 수단선택모형의 두 도시간 이전은 불가능한 것으로 나타났다. 서울의 출근통행의 시간가치가 일산보다 전반적으로 큰 것으로 분석되었고, 특히 서울의 경우, 택시이용자의 시간가치가 자가용 이용자의 시간가치보다 큰 것으로 나타났다. 두 도시 모두 통행시간에 대한 탄력성 통행비용에 대한 탄력성보다 전반적으로 크며, 버스와 지하철간의 통행시간에 대한 교차탄력성이 매유 높은 것으로 분석되었다.

  • PDF

Different Mode of Cytochrome c and Apocytochrome c Interations with Phospholipid Bilayer

  • Seungcheol Lee;Hyoungman Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.131-134
    • /
    • 1990
  • Cytochrome c induces fusion of phosphatidylserine /phosphatidylethanolamine vesicles while apocytochrome c does not have a fusogenic capability despite the fact that the apoprotein binds to the vesicles more extensively. In order to see whether the difference in the fusogenic behavior comes from the topological variation in membrane bound proteins, the holoprotein and apoprotein were labeled with phenylisothiocyanate, a hydrophobic label, in the presence of its hydrophilic analogue p-sulfophenylisothiocyanate. Apocytochrome c was labeled with the hydrophobic probe more extensively than the cytochrome c, indicating that the apoprotein penetrates deeper into the bilayer than cytochrome c does. The translocation experiments of these proteins by trypsin entrapped vesicles further supported this conclusion.

Dynamic behavior investigation of scale building renovated by repair mortar

  • Basaran, Hakan
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.531-544
    • /
    • 2015
  • The objective of this study was to examine the effect of repair mortar on the dynamic properties such as natural frequencies, mode shape and damping ratios of two story single span scale reinforced concrete building. To this end, two story single span scale reinforced concrete building having dimensions of 150 cm (width), 150 cm (length) and 135 cm (height) was constructed. Workmanship defects such as separation of material, faulty vibration application and bad gradation of the structure were properly evaluated. Dynamic properties of damaged structure were experimentally determined using Operational Modal Analysis (OMA). Detected defects in the structure were fixed by plastering with repair mortar. Dynamic properties of repaired structure were reevaluated by using the OMA method. Finite element software called Abaqus was used to numerically determine dynamic properties of the structure. Structure modeled as solid was subjected to Linear Perturbation Frequency Method. The changes in dynamic properties of structure after the repair process were comparatively studied by evaluating experimental and numerical results.

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.40 no.5
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Interlaminar Fracture Toughness of GFRP Composites for Insulating Structure of Magnet System (전자석 시스템의 절연 구조물용 유리섬유강화 복합재료의 층간 파괴인성)

  • Song, Jun Hee;Kim, Hak Kun;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.754-759
    • /
    • 2011
  • In this study, the interlaminar fracture behaviors of laminated GFRP composites were investigated, and the results could be used for damage tolerance design based on fracture mechanics. Three types of laminated GFRP composites that can be used as high voltage insulating materials in magnet systems were fabricated in order to study the interlaminar fracture behavior according to the molding process. The values of interlaminar fracture toughness for the VPI, prepreg, and HPL laminate were $1.9MPa{\cdot}^{1/2}$, $1.7MPa{\cdot}^{1/2}$, and $2.2MPa{\cdot}^{1/2}$, respectively. HPL laminate showed the best fracture resistance. The failure modes of HPL and VPI were similar to that of an adhesive joint, and prepreg laminates showed partial cohesive failure mode due to internal voids.

Plasticity of Amorphous Alloys: 1. Homogeneous Deformation (비정질 합금의 소성 1: 균일변형)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.759-772
    • /
    • 2009
  • Amorphous alloys, in addition to being promising materials for a variety of practical applications, provide an excellent test bed for evaluating our understanding of the underlying physics on deformation in amorphous solids. Like many amorphous materials, amorphous alloys can exhibit either homogeneous or inhomogeneous deformation depending on the stress level. The mode of deformation has a strong influence on whether the material behavior is classified as ductile or brittle. It was observed that the characteristics of these deformations are largely dependent on the atomic-scale structures of the alloys and determine the amount of the plastic deformation prior to failure. In this study, the structural features that control the homogeneous deformation of amorphous alloys are outlined on the basis on experiments and molecular dynamics simulations.