DOI QR코드

DOI QR Code

Interlaminar Fracture Toughness of GFRP Composites for Insulating Structure of Magnet System

전자석 시스템의 절연 구조물용 유리섬유강화 복합재료의 층간 파괴인성

  • Song, Jun Hee (Dept. of Mechanical & Automotive Engineering, Jeonju University) ;
  • Kim, Hak Kun (National Fusion Research Institute) ;
  • Kim, Yonjig (Division of Mechanical Design Engineering, Chonbuk National University)
  • 송준희 (전주대학교 공과대학 기계자동차공학과) ;
  • 김학근 (국가핵융합연구소) ;
  • 김연직 (전북대학교 공과대학 기계설계공학부)
  • Received : 2011.04.11
  • Published : 2011.10.25

Abstract

In this study, the interlaminar fracture behaviors of laminated GFRP composites were investigated, and the results could be used for damage tolerance design based on fracture mechanics. Three types of laminated GFRP composites that can be used as high voltage insulating materials in magnet systems were fabricated in order to study the interlaminar fracture behavior according to the molding process. The values of interlaminar fracture toughness for the VPI, prepreg, and HPL laminate were $1.9MPa{\cdot}^{1/2}$, $1.7MPa{\cdot}^{1/2}$, and $2.2MPa{\cdot}^{1/2}$, respectively. HPL laminate showed the best fracture resistance. The failure modes of HPL and VPI were similar to that of an adhesive joint, and prepreg laminates showed partial cohesive failure mode due to internal voids.

Keywords

References

  1. G. S. Lee, D. P. Ivanov, H. L. Yang, Hogun Jhang, J. Y. Kim, D. K. Lee, K. I. You, H. K. Kim, J. S. Bak, M. Kwon, and J. H. Han, ITC 2001(International Toki Conference), Japan (2001).
  2. John R. Last, John S. Jeskins, Alan S. Kaye, and Valeria Riccardo, IEEE Transaction on Applied Superconductivity 12, 1238 (2002). https://doi.org/10.1109/TASC.2002.1018625
  3. H. K. Kim, J. W. Sa, H. T. Kim, C. H. Choi, H. L. Yang, K. R. Park, K. S. Lee, and J. S. Bak, Korean J. Physical Society 49, S254 (2006).
  4. W. L. Bradley, Key Eng. Mater. 37, 161 (1989). https://doi.org/10.4028/www.scientific.net/KEM.37.161
  5. D. Hunston and R. Dehl, Soc. Manufacturing Eng. EM87-355 (1987).
  6. A. B. Pereira, de Morais, M. F. S. F. de Moura, and A. G. Magalhaes, Composites Part A 36, 1119 (2005). https://doi.org/10.1016/j.compositesa.2005.01.006
  7. A. B. Pereira and A. B. de Morais, Composites Science and Technology 64, 2261 (2004). https://doi.org/10.1016/j.compscitech.2004.03.001
  8. Michael C. Y. Niu, Composite Airframe Structures, Conmilit Press Ltd., (1993).
  9. ASTM Standard D5045, ASTM, West Conshohocken, PA, USA (2007).
  10. J. W. Davis, J. A. McCarthy, and J. N. Schurb, Mater. Des. Eng. 87-91 (1964).
  11. Y. Wang and D. Zhao, Composites 26, 115 (1995). https://doi.org/10.1016/0010-4361(95)90411-R
  12. R. W. Messler Jr., Joining of Advanced Materials, Butterworth-Heinemann, 107-141 (1993).
  13. Y. Kim, Transactions of KSME A-32, 788 (2008).
  14. T. L. Anderson, Fracture Mechanics, CRC Press, 485-496 (2005)
  15. R. Velmurugan and S. Solaimurugan, Composites Sci. and Tech. 67, 61 (2007). https://doi.org/10.1016/j.compscitech.2006.03.032