• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.026 seconds

Analytic Investigation on Inelastic Behavior of Reinforced Concrete Frame with Seismic Detail (내진 상세 철근콘크리트 골조의 비탄성 거동에 관한 해석적 연구)

  • 박철용;이한선;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.466-472
    • /
    • 1996
  • The nonlinear analysis was perforned for a 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail using KDARC 2D program. The analytical models consist of the material model, the member model, the hysteretic model, and the damage model etc. The conclusion based on the results of analysis is as following. : (1) Story shear-displacement relationship is similar to the experiment result but from the energy point of view, the analysis relationship is similar to the experiment result but from the energy point of view, the analysis result was different from the experiment result. (2) Plastic hinges were found to occur mainly in beams at first story while all the columns had plastic hinges throughout the structure. (3) Failure mode is a little different from experiment result in the yielding mechanism. (4) Damage index isabout 0.25. This means that the degree of damage is moderate and can be repairable.

  • PDF

Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading (기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan;Nah, Hwan-Sean;Kim, Sang-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique (차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF

Constant Altitude Flight Control for Quadrotor UAVs with Dynamic Feedforward Compensation

  • Razinkova, Anastasia;Kang, Byung-Jun;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • This study addresses the control problem of an unmanned aerial vehicle (UAV) during the transition period when the flying mode changes from hovering to translational motion in the horizontal plane. First, we introduce a compensation algorithm that improves height stabilization and reduces altitude drop. The main principle is to incorporate pitch and roll measurements into the feedforward term of the altitude controller to provide a larger thrust force. To further improve altitude control, we propose the fuzzy logic controller that improves system behavior. Simulation results presented in the paper highlight the effectiveness of the proposed controllers.

The oscillation conduction characteristics of ZnO varistor fabricated with 3-composition seed grain method (3-성분 종입자법으로 제조한 저전압 ZnO 바리스터의 발진 전도특성)

  • 장경욱;김영천;황석영;김용주;이준웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1019-1026
    • /
    • 1996
  • In this study, we may be presented the carrier oscillation properties for the low-voltage varistor fabricated by a new method of three composition seed grain, in order to analyze the behavior of carriers at the its equivalent circuit model. The oscillation phenomena of carriers appeared from current-voltage characteristics under knee voltage is shown by the transient flow of nontrapped carriers group in the trap level of intergranular layer, surface state and/or depletion layer. In particularly, current oscillation phenomena is hardly shown in the high electric field. It is that the injected carriers from both electrodes are directly from the conduction band of forward biased ZnO grain through the intergranular layer into the reverse biased ZnO grain, because the trap level in the electric field above the knee voltage is mostly filled.

  • PDF

Selenide Glass Optical Fiber Doped with $Pr^{3+}$ for U-Band Optical Amplifier

  • Chung, Woon-Jin;Seo, Hong-Seok;Park, Bong-Je;Ahn, Joon-Tae;Choi, Yong-Gyu
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • $Pr^{3+}-doped$ selenide glass optical fiber, which guarantees single-mode propagation of above at least 1310 nm, has been successfully fabricated using a Ge-Ga-Sb-Se glass system. Thermal properties such as glass transition temperature and viscosity of the glasses have been analyzed to find optimum conditions for fiber drawing. Attenuation loss incorporating the effects of an electronic band gap transition, Rayleigh scattering, and multiphonon absorption has also been theoretically estimated for the Ge-Ga-Sb-Se fiber. A conventional double crucible technique has been applied to fabricate the selenide fiber. The background loss of the fiber was estimated to be approximately 0.64 dB/m at 1650 nm, which can be considered fairly good. When excited at approximately 1470 nm, $Pr^{3+}-doped$ selenide fiber resulted in amplified spontaneous emission and saturation behavior with increasing pump power in a U-band wavelength range of 1625 to 1675 nm.

  • PDF

Fracture Characteristics Unidirectional Composite Single-Lap Bonded Joints (일방향 복합재료 single-lap 접합 조인트의 파괴 특성)

  • Kim Kwang-Soo;Yoo Jae-Seok;Jang Young-Soo;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.232-236
    • /
    • 2004
  • The fracture characteristics of unidirectional composite single-lap bonded joints were investigated experimentally and numerically. The effects of bonding method, surface roughness, bondline thickness and the existence of fillet on the failure characteristics and strength of bonded single-lap joints were evaluated experimentally. The failure process, failure mode and the behavior of load-displacement curve was apparently different according to bonding method. The failure load of the specimen co-cured without adhesive was definitely superior to other types of specimens but the specimens co-cured with adhesive film had a less strength than secondary bonded specimens. In the secondary bonded specimens, the lower value of surface roughness and existence of fillet improved the strength of specimens. The strain energy release rates calculated by geometric nonlinear finite element analyses and Virtual Crack Closure Technique for the secondary bonded specimens considering the three types of initial cracks - comer crack, edge crack and delamination crack - were consistent with the test results.

  • PDF

Numerical analysis of crack propagation in cement PMMA: application of SED approach

  • Ali, Benouis;Abdelkader, Boulenouar;Noureddine, Benseddiq;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Finite element analysis (FEA) combined with the concepts of linear elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. In this paper, a numerical modeling of crack propagation in the cement mantle of the reconstructed acetabulum is presented. This work is based on the implementation of the displacement extrapolation method (DEM) and the strain energy density (SED) theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors (SIFs). In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the defect on the crack propagation path was highlighted.

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Sport Weld Metals (스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펄스 파형의 영향)

  • 김종도;카따야마세이지
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S. through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

  • PDF