• Title/Summary/Keyword: modal method

Search Result 1,850, Processing Time 0.028 seconds

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Numerical Computations for Hydrofoil-Generated Nonlinear Waves (수중익에 의한 비선형 조파현상의 수치해석)

  • Hong-Gi Lee;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.29-40
    • /
    • 1993
  • The fundamental characteristics of nonlinear free-surface waves generated by a shallowly submerged 3-dimensional hydrofoil are investigated. The fluid is assumed inviscid, incompressible and its motion irrotational. The surface tension on the free-surface is neglected. The hydrofoil is represented by a horseshoe vortex system whose shape is assumed fixed. Also the strengths of vortices are assumed given. The exact problem for the wave potential due to the horseshoe vortex system is formulated by the variational principle based on the classical Hamilton's principle. The localized finite element method is used in the numerical computations. In order to increase the numerical efficiency, an intermediate nonlinear-to-linear transition buffer subdomain for a smooth matching is introduced between the fully nonlinear computation subdomain and the truncated linear infinite subdomain. Also used is the modal analysis to reduce the computation tome drastically. The effect of inflow velocity, submergence depth of the hydrofoil and the shape of circulation distribution on the wave profiles are thoroughly examined. Especially it was possible to investigate the nonlinear influence of the free vortex on the free vortex. The nonlinear free-surface effect on the induced forces on the hydrofoil is also investigated.

  • PDF

A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis (유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구)

  • Kim, Jae-Seon;Lee, Meong-Ho;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.161-168
    • /
    • 2021
  • As the demand for high speed and high precision increases in the field of machine tool, interest in stiffness and vibration of machine tool is increasing. However, it takes a lot of time to develop a detailed design of machine tool based on experience, and it is difficult to design appropriately. Recently, structural optimization using FEM are increasingly used in machine tool design. But, it is difficult to optimize in consideration of the vibration state of the structure since optimization through stress distribution of a structure is mainly used, In this paper, Static structural analysis, mode analysis, and harmonic analysis using FEM were conducted to optimize the head structure that has the most influence on machining in a 5-axis machine tool. It is proposed a topology optimization analysis method that considers both static stiffness and dynamic stiffness using objective function design.

Multi-Modal Based Malware Similarity Estimation Method (멀티모달 기반 악성코드 유사도 계산 기법)

  • Yoo, Jeong Do;Kim, Taekyu;Kim, In-sung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.347-363
    • /
    • 2019
  • Malware has its own unique behavior characteristics, like DNA for living things. To respond APT (Advanced Persistent Threat) attacks in advance, it needs to extract behavioral characteristics from malware. To this end, it needs to do classification for each malware based on its behavioral similarity. In this paper, various similarity of Windows malware is estimated; and based on these similarity values, malware's family is predicted. The similarity measures used in this paper are as follows: 'TF-IDF cosine similarity', 'Nilsimsa similarity', 'malware function cosine similarity' and 'Jaccard similarity'. As a result, we find the prediction rate for each similarity measure is widely different. Although, there is no similarity measure which can be applied to malware classification with high accuracy, this result can be helpful to select a similarity measure to classify specific malware family.

Free vibrations of a two-cable network inter-supported by cross-links extended to ground

  • Zhou, H.J.;Wu, Y.H.;Li, L.X.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.653-667
    • /
    • 2019
  • Using cross-ties to connect cables together when forming a cable network is regarded as an efficient method of mitigating cable vibrations. Cross-ties have been extended and fixed on bridge decks or towers in some engineering applications. However, the dynamics of this kind of system need to be further studied, and the effects of extending cross-links to bridge decks/towers on the modal response of the system should be assessed in detail. In this paper, a system of two cables connected by an inter-supported cross-link with another lower cross-link extended to the ground is proposed and analyzed. The characteristic equation of the system is derived, and some limiting solutions in closed form of the system are derived. Roots of cable system with special configurations are also discussed, attention being given to the case when the two cables are identical. A predictable mode behavior was found when the stiffness of inter-connection cross-link and the cross-link extended to the ground were the same. The vector of mode energy distribution and the degree of mode localization index are proposed so as to distinguish global and local modes. The change of mode behaviors is further discussed in the case when the two cables are not identical. Effects of cross-link stiffness, cross-link location, mass-tension ratio, cable length ratio and frequency ratio on $1^{st}$ mode frequency and mode shape are addressed.

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

A study of express bus entrance system for wheelchair users (고속버스용 휠체어 탑승 전용 승강구 개조부 연구)

  • Lee, Yong-Woo;Ha, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • In the rapidly aging society, the number of wheelchair users is increasing steadily. On the other hand, it is almost impossible for a disabled person using a wheelchair to use express buses. Therefore, it is necessary to develop an express bus that can secure the rights of wheelchair users. For these special types of express buses, it is required to develop a special entrance and lift system. The development of a wheelchair entrance system for the express buses requires design modification, retrofit, and reinforcement of the bus frame. This study evaluated the structural integrity of an entrance system for wheelchair users using a finite element method. Torsional stiffness and modal analysis were performed through structural analysis. Through sensitivity analysis, optimization was performed to reduce the weight of the frame. These results on the wheelchair entrance system are expected to be utilized in the vehicle modification and welfare industries.

A Method of Comparing Risk Similarities Based on Multimodal Data (멀티모달 데이터 기반 위험 발생 유사성 비교 방법)

  • Kwon, Eun-Jung;Shin, WonJae;Lee, Yong-Tae;Lee, Kyu-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.510-512
    • /
    • 2019
  • Recently, there have been growing requirements in the public safety sector to ensure safety through detection of hazardous situations or preemptive predictions. It is noteworthy that various sensor data can be analyzed and utilized as a result of mobile device's dissemination, and many advantages can be used in terms of safety and security. An effective modeling technique is needed to combine sensor data generated by smart-phones and wearable devices to analyze users' moving patterns and behavioral patterns, and to ensure public safety by fusing location-based crime risk data provided.

  • PDF

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.