• Title/Summary/Keyword: modal frequency

Search Result 1,284, Processing Time 0.029 seconds

Modal Parameter Extraction Using a Digital Camera (디지털 카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF

A Study on a Modal Parameter Estimation Algorithm (모우드 파라미터 산출 알고리즘에 관한 연구)

  • Hwang, Won-Gul;Kee, Chang-Doo;Kim, Jong-Yeop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-55
    • /
    • 1990
  • A new curve fitting algorithm based on modal analysis is introduced for extracting the modal parameters from the measured frequency responses. To compensate the effect of cut-off frequency ranges the transfer function including residual mass and residual flexibility is employed. Model parameters are computed from the newly defined form of transfer function in a simple way. The accuracy of this algorithm is proved by applying to the 3 degrees of freedom model and vibration of cantilever beam.

  • PDF

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 1 : Modeling and Analysis (방향 시계열에 의한 회전체 동특성 규명: (I) 모델링 및 해석)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1103-1112
    • /
    • 1998
  • A new time series method, directional ARMAX (dARMAX) model-based approach. is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. This paper is divided into two parts : The dARMAX modeling, analysis. and fitting strategy are presented in the first part. whereas a evaluation of its performance characteristics based on both simulated and experimental data is presented in the second.

  • PDF

A study on the dynamic characteristics of CFRP PLATE by modal analysis method (모우드 해석법에 의한 CFRP PLATE의 동특성에 관한 연구)

  • 한응교;오재응;방태규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • Using modal analysis method this paper examines the dynamic characteristics of composite material closely. Composite material is superior to conventional material in view of mechanical properties. So the laminate of CFRPis compared with ALPlate. As the results, the overall vibration level of CFRP is lower than that of AL Plate and is low when fiber direction is parallel to the fixed point. Also, the natural frequency of CFRP is situated in low frequency than that of AL.

  • PDF

Comparative study on modal identification methods using output-only information

  • Yi, Jin-Hak;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.445-466
    • /
    • 2004
  • In this paper, several modal identification techniques for output-only structural systems are extensively investigated. The methods considered are the power spectral method, the frequency domain decomposition method, the Ibrahim time domain method, the eigensystem realization algorithm, and the stochastic subspace identification method. Generally, the power spectral method is most widely used in practical area, however, the other methods may give better estimates particularly for the cases with closed modes and/or with large measurement noise. Example analyses were carried out on typical structural systems under three different loading cases, and the identification performances were examined throught the comparisons between the estimates by various methods.

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics (회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화)

  • Yun, Yeong-Hun;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

Double Fourier Sine Series Method for The Free Vibration of a Rectangular Plate (이중 사인 시리즈법에 의한 직사각형 평판의 자유 진동해석)

  • 윤종욱;이장무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.771-779
    • /
    • 1996
  • In this paper, double Fourier sine series is used as a modal displacement functions of a rectangular plate and applied to the free vibration analysis of a rectangular plate under various boundary conditions. The method of stationary potential energy is used to obtain the modal displacements of a plate. To enhance the flexibility of the double Fourier sine series, Lagrangian multipliers are utilized to match the geometric boundary conditions, and Stokes' transformation is used to handle the displacements that are not satisfied by the double Fourier sine series. The frequency parameters and mode shapes obtained by the present method are compared with those obtained by MSC/NASTRAN and other analysis.

  • PDF

The First and Second Kinds of Total Impedances (제 1 종 및 제 2 종 평균 임피던스)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.351-356
    • /
    • 2000
  • Impedance is an inherent property that represents the relation between the excitation and motion of a system. It is not only gives the frequency characteristics of the system but also help us to understand an interaction with the other systems. If the impedance to be described is not with respect to a point but to a certain area, modal impedance must be used. However, it is highly dependent on modal functions and it is needed to know all information on the modal impedance to understand the whole characteristics. In this paper, two new types of impedances are introduced: the first and second kinds of total impedances. Their definitions certainly convey the implication that their properties are similar to the conventional impedance. With some limit checks and the simulations of several simple systems, we found that they are useful to describe the frequency characteristics of systems.

  • PDF

A Study on the Modal Parameters of the scaled building structure (축소 건물모델의 모달 파라미터 추정에 관한 연구)

  • Park, Hae-Dong;Park, Jin-Il;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.571-575
    • /
    • 2000
  • The physical properties of the spatial model, mass, stiffness and damping matrix, can be defined by a specific natural frequency, damping ratio and mode shape. These modal parameters can be determined from a set of frequency response function(FRF) measured by exciting the structure and measuring the responses at various points around the structure. In this paper, The Transfer Matrix is obtained by experimental modal analysis for the 3-story scaled building model which TMD is installed on top and the physical properties of the spatial model is determined using the residue matrix and the location of poles from FRF measurement using polynomial curve fitting methods.

  • PDF

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal Characteristics (진동 특성을 고려한 회전 외팔보 형상의 최적화)

  • Yun, Young-Hoon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.643-648
    • /
    • 2000
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency of a rotating beam. By changing the thickness of the rotating beam, the modal characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized usefully for the design of rotating structures such as turbine blades and aircraft rotary wings.

  • PDF