• Title/Summary/Keyword: mobile vision system

Search Result 292, Processing Time 0.024 seconds

Mobile Robot Navigation Using Vision Information (시각 정보를 이용한 이동 로보트의 항법)

  • Cho, Dong-Kwon;Kwon, Ho-Yeol;Suh, Il-Hong;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.689-692
    • /
    • 1989
  • In this paper, the navigation problem for a mobile robot is investigated. Specifically, it is proposed that simple guide-marks be introduced and the navigation scheme be generated in conjunction with the guide-marks sensed through camera vision. For autonomous navigation, it was shown that a triple guide-mark system is more effective than a single guide-mark in estimating the position of rho vehicle itself. the navigation system is tested via a mobile robot 'Hero' equipped with a single camera vision.

  • PDF

A Study on Obstacle Detection for Mobile Robot Navigation (이동형 로보트 주행을 위한 장애물 검출에 관한 연구)

  • Yun, Ji-Ho;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.587-589
    • /
    • 1995
  • The safe navigation of a mobile robot requires the recognition of the environment in terms of vision processing. To be guided in the given path, the robot should acquire the information about where the wall and corridor are located. Also unexpected obstacles should be detected as rapid as possible for the safe obstacle avoidance. In the paper, we assume that the mobile robot should be navigated in the flat surface. In terms of this assumption we simplify the correspondence problem by the free navigation surface and matching features in that coordinate system. Basically, the vision processing system adopts line segment of edge as the feature. The extracted line segments of edge out of both image are matched in the free nevigation surface. According to the matching result, each line segment is labeled by the attributes regarding obstacle and free surface and the 3D shape of obstacle is interpreted. This proposed vision processing method is verified in terms of various simulations and experimentation using real images.

  • PDF

A Study on the Construction of Omnidirecional Vision System for the Mobile Robot's the Autonomous Navigation (이동로봇의 자율주행을 위한 전방향 비젼 시스템의 구현에 관한 연구)

  • 고민수;한영환;이응혁;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.17-20
    • /
    • 2001
  • This study is regarding the autonomous navigation of the mobile robot which operates through a sensor, the Omnnidirectional Vision System which makes it possible to retrieve the real-time movements of the objects and the walls accessing the robot from all directions and to shorten the processing time. After attempting to extend the field of view by using the reflection system and then learning the point of all directions of 2$\pi$ from the robot at the distance, robot recognizes three-dimensional world through the simple image process, the transform procedure and constant monitoring of the angle and distance from the peripheral obstacles. This study consists of 3 parts: Part 1 regards the process of designing Omnnidirectional Vision System and part 2 the image process, and part 3 estimates the implementation system through the comparative study process and three-dimensional measurements.

  • PDF

Automatic Extraction of Stable Visual Landmarks for a Mobile Robot under Uncertainty (이동로봇의 불확실성을 고려한 시각 랜드마크의 자동 추출)

  • 문인혁;조강현;윤형로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.264-264
    • /
    • 2000
  • In this paper, we propose a method to automatically extract stable visual landmarks from observed data for a mobile robot with stereo vision system. The robot selects as stable landmarks vertical line segments which are distinct and on planar surfaces, because they are expected to be observed reliably from various view-points. When the robot moves, it uses several, less uncertain landmarks for estimating its motion. Experimental results in real scenes show the validity of the proposed method.

  • PDF

Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation (비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

The Design of Controller for Unlimited Track Mobile Robot

  • Park, Han-Soo;Heon Jeong;Park, Sei-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.6-41
    • /
    • 2001
  • As autonomous mobile robot become more widely used in industry, the importance of navigation system is rising, But eh primary method of locomotion is with wheels, which cause man problems in controlling tracked mobile robots. In this paper, we discuss the used navigation control of tracked mobile robots with multiple sensors. The multiple sensors are composed of ultrasonic wave sensors and vision sensors. Vision sensors gauge distance using a laser and create visual images, to estimate robot position. The 80196 is used at close range and the vision board is used at long range. Data is managed in the main PC and management is distributed to ever sensor. The controller employs fuzzy logic.

  • PDF

Light-Adaptive Vision System for Remote Surveillance Using an Edge Detection Vision Chip

  • Choi, Kyung-Hwa;Jo, Sung-Hyun;Seo, Sang-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2011
  • In this paper, we propose a vision system using a field programmable gate array(FPGA) and a smart vision chip. The output of the vision chip is varied by illumination conditions. This chip is suitable as a surveillance system in a dynamic environment. However, because the output swing of a smart vision chip is too small to definitely confirm the warning signal with the FPGA, a modification was needed for a reliable signal. The proposed system is based on a transmission control protocol/internet protocol(TCP/IP) that enables monitoring from a remote place. The warning signal indicates that some objects are too near.

Development of a Visual Servo System in a Mobile Manipulator for Operating Numeral Buttons (이동형 머니퓰레이터의 숫자버튼 조작을 위한 시각제어 시스템 개발)

  • 박민규;이민철;주원동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.92-100
    • /
    • 2004
  • A service robot is expected to be useful in indoor environment such as a hotel, a hospital and so on. However, many service robots are driven by wheels so that they cannot climb stairs to move to other floors. If the robot cannot use elevators. In this paper, the mobile manipulator system was developed, which can operate numeral buttons on the operating panel in the elevator. To perform this task, the robot is composed of an image recognition module, an ultrasonic sensor module and a manipulator. The robot can recognize numeral buttons and an end-effector in manipulator by the vision system. The Learning vector quantization (LVQ) algorithm is used to recognize the number on the button. The barcode mark on the end-effector is used to recognize the end-effector. The manipulator can push numeral buttons using informations captured by the vision system. The proposed method is evaluated by experiments.

Attitude Compensation of Vision/DR Integrated Navigation System Using Gyroscope (자이로스코프를 이용한 영상/DR 통합 항법 시스템의 자세보정)

  • Park, Sul-Gee;Koo, Moon-Suk;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.810-815
    • /
    • 2010
  • This paper proposes a vision/DR integrated navigation system using distance between wheels of the vehicle and a gyroscope. In order to show the validity of the proposed vision/DR integrated navigation system, experiments were performed for a trajectory of a mobile robot. Experimental results show that the proposed vision/DR integrated navigation system gives better navigation performance than a vision/DR integrated navigation system using only distance between wheels of the vehicle.

An active stereo camera modeling (동적 스테레오 카메라 모델링)

  • Do, Kyoung-Mihn;Lee, Kwae-Hi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.297-304
    • /
    • 1997
  • In stereo vision, camera modeling is very important because the accuracy of the three dimensional locations depends considerably on it. In the existing stereo camera models, two camera planes are located in the same plane or on the optical axis. These camera models cannot be used in the active vision system where it is necessary to obtain two stereo images simultaneously. In this paper, we propose four kinds of stereo camera models for active stereo vision system where focal lengths of the two cameras are different and each camera is able to rotate independently. A single closed form solution is obtained for all models. The influence of the stereo camera model to the field of view, occlusion, and search area used for matching is shown in this paper. And errors due to inaccurate focal length are analyzed and simulation results are shown. It is expected that the three dimensional locations of objects are determined in real time by applying proposed stereo camera models to the active stereo vision system, such as a mobile robot.

  • PDF