최근 비디오 감시, 로봇 시각 휴대폰 등 무수히 많은 카메라가 생활 속에 파고들면서 휴먼 동작 인식은 컴퓨터 시각 분야의 새로운 붐을 일으키고 있다. 자체로 그다지 흥미 있는 동작은 아니지만 걸음걸이 또는 보행은 가장 보편적으로 많이 관찰되는, 의심할 여지없이 사람의 대표적인 동작이다. 그리 오래되지 않은 과거에 보행자 인식의 관점에서 반짝 연구가 있었지만 관심의 길이가 짧은 만큼 보행 동작에 관한 체계적인 분석과 이해 없이 이루어졌었다. 본 연구에서는 일련의 점진적인 모델을 이용하여 보행 동작의 구조를 체계적으로 분석하고자 한다. 입력 영상 신호의 다양한 변형과 불완전성을 극복할 수 있는 동적 베이스망 기반의 보행자 모델과 보행 모델을 제시한다. 그리고 이변량 폰 미제스 분포의 조건부 밀도 함수를 기반으로 마르코프 체인의 이산 상태 공간을 연속 공간으로 확장하는 방법을 제안한다. 제안된 모형화 프레임워크를 이용한 일련의 시험, 분석에서 보행자를 91.67% 인식하며 보행 동작을 보행 방향과 보행 자세의 두 가지 독립적인 성분으로 분리 해석할 수 있었다.
본 논문에서는 인간과 환경사이의 물리적 또는 심리적 인터액션을 통한 인간중심의 적절한 서비스를 제공하는 공간지능화(iSpace: Intelligent Space) 구현하고자 네트웍 센서 인식공간을 소개하고 있다. 영상 데이터 처리 및 정보 네트웍 기능을 갖는 다수의 컬러 CCD 카메라를 iSpace 공간에 분산 배치하였다. iSpace내의 정보획득을 위한 네트웍 센서를 분산 지능형 네트웍 디바이스(DIND: Distributed Intelligent Network Devices)라고 명명하고 있으며, 각 DIND는 일종의 클라이언트 역할을 수행하도록 하였으며, DIND는 카메라 센서를 이용하는 이른바 카메라 네트워크를 구성한 것으로 이를 통해 실내 환경을 인식하고 모델링 하며 공간 내 거주자의 의도를 인식하기 위한 시스템을 구축하였다.
This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.
This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.
본 논문에서는 인간과 환경사이의 물리적 또는 심리적 인터액션을 통한 인간중심의 적절한 서비스를 제공하는 공간지능화(iSpace: Intelligent Space) 구현하고자 네트웍 센서 인식공간을 소개하고 있다. 영상 데이터 처리 및 정보 네트웍 기능을 갖는 다수의 컬러 CCD 카메라를 iSpace 공간에 분산 배치하였다. iSpace내의 정보획득을 위한 네트웍 센서를 분산 지능형 네트웍 디바이스(DIND: Distributed Intelligent Network Devices)라고 명명하고 있으며, 각 DIND는 일종의 클라이언트 역할을 수행하도록 하였으며, DIND는 카메라 센서를 이용하는 이른바 카메라 네트워크를 구성한 것으로 이를 통해 실내 환경을 인식하고 모델링 하며 공간 내 거주자의 의도를 인식하기 위한 시스템을 구축하였다.
본 연구에서는 운동부 지도자들이 학생 선수들의 결과 데이터를 핫 존(Hot Zone)과 콜드 존(Cold Zone)으로 구분하여 지도에 참고할 수 있는 어플리케이션을 개발하였다. 본 연구에서 개발된 종목은 농구이다. 운동부 지도자들은 학생 선수들의 득점 확률이 높은 곳을 분석할 수 있고, 이를 이용하여 훈련 성과를 더욱 높일 수 있다. 그리고 학생 선수들도 축적된 데이터를 통하여 자신의 장단점을 파악하여 동기 부여와 경기력 향상을 기대할 수 있으며, 이에 따른 후속 연구를 할 수 있을 것으로 기대한다.
Real-Time object tracking has emerged as an important component in several application areas including machine vision. surveillance. Human-Computer Interaction. image-based control. and so on. And there has been developed various algorithms for a long time. But in many cases. they have showed limited results under uncontrolled situation such as illumination changes or cluttered background. In this paper. we present a novel. computationally efficient algorithm for tracking human face robustly under illumination changes and cluttered backgrounds. Previous algorithms usually defines color model as a 2D membership function in a color space without consideration for illumination changes. Our new algorithm developed here. however. constructs a 3D color model by analysing plenty of images acquired under various illumination conditions. The algorithm described is applied to a mobile head-eye robot and experimented under various uncontrolled environments. It can track an human face more than 100 frames per second excluding image acquisition time.
This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.
카메라를 이용하는 시각(visual) SLAM(Simultaneous Localization And Mapping)은 로봇의 위치 등을 파악하는데 널리 이용되고 있다. 일반적으로 시각 SLAM은 움직임이 없는 고정된 특징점을 대상으로 연속적인 시퀀스 상에서 카메라의 움직임을 추정한다. 따라서 이동하는 객체가 많이 존재하는 상황에서는 안정적인 결과를 기대하기 어렵다. 본 논문에서는 이동 객체가 많은 상황에서 스테레오 카메라를 이용한 SLAM을 안정화하는 방법을 제안한다. 먼저, 스테레오 카메라를 이용하여 깊이영상을 추출하고 옵티컬 플로우를 계산한다. 그리고 좌우 영상의 옵티컬 플로우를 이용하여 시차변화(disparity change)를 계산한다. 그리고 깊이 영상에서 사람과 같이 움직이는 객체에 대한 ROI(Region Of Interest)를 구한다. 실내 상황에서는 벽과 같은 정적인 평면들이 움직이는 영역으로 잘못 판단되는 경우가 자주 발생한다. 이런 문제점을 해결하기 위해 깊이 영상을 X-Z 평면으로 사영하고 허프(hough) 변환하여 장면을 구성하는 평면을 결정한다. 앞의 과정에서 판단된 이동 객체 중에서 벽과 같은 장면 요소를 제외한다. 제안된 방법을 통해 정적인 특징점이 요구되는 SLAM의 성능을 보다 안정화할 수 있음을 확인하였다.
본 논문에서는 실내 환경에서 동적 스테레오 카메라(active stereo camera)를 이용한 새로운 인체 실루엣 추출 방법을 제안한다. 제안한 알고리즘의 주된 응용분야는 이동 로봇 플랫폼에서의 인체 실루엣을 이용한 제스처 인식이다. 먼 거리에서 움직이는 객체를 분할(segmentation)하는 데에는 저해상도, 그림자, 스테레오 정합의 불확실성, 배경과 객체의 색 분포의 불안정성 등과 같은 다양한 문제를 내포한다. 우리는 먼저 이미지 분할 기법과 스테레오 정보를 이용하여 신뢰도 높은 객체와 배경 영역을 추정하였다. 이렇게 추정된 영역을 적절히 그래프 컷(graph cut)에 활용하는 방식을 고안함으로써 주변 환경의 변화에 강인한 인체 실루엣 추출을 가능하게 하였다. 제안한 방식은 실내에서 펜-틸트(pan-tilt) 스테레오 카메라로 획득된 비디오 데이타를 대상으로 실험하였으며, 색, 색과 스테레오, 색과 대비 정보를 기반으로 한 방법들과 비교 실험한 결과 정확도가 많이 향상된 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.