• 제목/요약/키워드: mobile learning system

검색결과 450건 처리시간 0.025초

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Unethical Network Attack Detection and Prevention using Fuzzy based Decision System in Mobile Ad-hoc Networks

  • Thanuja, R.;Umamakeswari, A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2086-2098
    • /
    • 2018
  • Security plays a vital role and is the key challenge in Mobile Ad-hoc Networks (MANET). Infrastructure-less nature of MANET makes it arduous to envisage the genre of topology. Due to its inexhaustible access, information disseminated by roaming nodes to other nodes is susceptible to many hazardous attacks. Intrusion Detection and Prevention System (IDPS) is undoubtedly a defense structure to address threats in MANET. Many IDPS methods have been developed to ascertain the exceptional behavior in these networks. Key issue in such IDPS is lack of fast self-organized learning engine that facilitates comprehensive situation awareness for optimum decision making. Proposed "Intelligent Behavioral Hybridized Intrusion Detection and Prevention System (IBH_IDPS)" is built with computational intelligence to detect complex multistage attacks making the system robust and reliable. The System comprises of an Intelligent Client Agent and a Smart Server empowered with fuzzy inference rule-based service engine to ensure confidentiality and integrity of network. Distributed Intelligent Client Agents incorporated with centralized Smart Server makes it capable of analyzing and categorizing unethical incidents appropriately through unsupervised learning mechanism. Experimental analysis proves the proposed model is highly attack resistant, reliable and secure on devices and shows promising gains with assured delivery ratio, low end-to-end delay compared to existing approach.

Avoidance Behavior of Small Mobile Robots based on the Successive Q-Learning

  • Kim, Min-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.164.1-164
    • /
    • 2001
  • Q-learning is a recent reinforcement learning algorithm that does not need a modeling of environment and it is a suitable approach to learn behaviors for autonomous agents. But when it is applied to multi-agent learning with many I/O states, it is usually too complex and slow. To overcome this problem in the multi-agent learning system, we propose the successive Q-learning algorithm. Successive Q-learning algorithm divides state-action pairs, which agents can have, into several Q-functions, so it can reduce complexity and calculation amounts. This algorithm is suitable for multi-agent learning in a dynamically changing environment. The proposed successive Q-learning algorithm is applied to the prey-predator problem with the one-prey and two-predators, and its effectiveness is verified from the efficient avoidance ability of the prey agent.

  • PDF

M-러닝을 활용한 공손 영어 표현 학습에 대한 연구 (A Study on the Learning of Polite Expressions Using M-learning)

  • 김혜정
    • 비교문화연구
    • /
    • 제42권
    • /
    • pp.261-283
    • /
    • 2016
  • 본 연구의 목적은 모바일 애플리케이션을 활용하여 공손 영어 표현 학습의 가능성을 고찰하고자 하는 것이다. 의사소통 능력의 향상을 도모하기 위해서는 문법적, 담화 능력 외에도 사회 언어적 능력이 필요하다. 상대방이 누구인지, 어떠한 대화 상황에 직면했는지, 대화의 주제나 목적 등에 따라 사회적 가치에 맞는 적합한 표현을 구사할 줄 알아야 한다. 상대방의 지위나 나이가 화자보다 높거나 상대방과의 친밀도가 낮을 경우 한국인 화자는 공손한 표현을 구사하게 된다. 한국어는 언어 자체적으로 경어 체계를 지니고 있지만 영어는 이와 다르기 때문에 학습자들은 영어의 공손 표현을 학습할 필요가 있다. 이를 위해 공손 언어 학습에 학습자들이 교실에서 누구나 쉽게 사용할 수 있는 모바일을 접목시키고자 한다. 학습 교재로는 영국의 시대극 "다운튼 애비"(Downton Abbey)를 이용하였는데 이 드라마는 귀족들의 삶을 중심으로 다루었기 때문에 공손 표현을 학습하기에는 매우 적합하다. 모바일 활용을 통한 공손 영어 학습의 효율성과 모바일 애플리케이션의 활용 가능성을 고찰하기 위해 네이버 밴드를 활용한 실험반과 일반적인 팀별 활동을 중심으로 한 통제반을 설정하였다. 두 반의 공손 언어 학습 효과를 확인하기 위해 두 번의 평가가 시행되었고 개방형 설문조사가 실시되었다. 평가 결과 모바일 애플리케이션의 사용은 공손 영어 표현 학습에 긍정적인 효과가 있었으며 모바일이 수업 후 활동으로 사용하기에 효율적인 학습 도구인 것으로 나타났다. 개방형 설문 조사에서 학습자들은 공손 표현을 우아하거나 고급스러운 언어 형식으로 인지하거나 실용적 표현과 구분하는 경향이 있었다. 시대극을 이용하여 공손 언어를 교수할 경우 교수자들은 현대 영어와의 접목을 고려할 필요가 있겠다.

기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템 (Sensor Data Collection & Refining System for Machine Learning-Based Cloud)

  • 황치곤;윤창표
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.165-170
    • /
    • 2021
  • 기계학습은 최근 대부분의 분야에서 적용하여 연구를 하고 있다. 이것은 기계학습의 결과가 결정된 것이 아니라 입력데이터의 학습으로 목적함수를 생성하고, 이를 통해 통하여 새로운 데이터에 대한 판단이 가능하기 때문이다. 또한, 축적된 데이터의 증가는 기계학습 결과의 정확도에 영향을 미친다. 이에 수집된 데이터는 기계학습에 중요한 요인이다. 제안하는 본 시스템은 서비스 제공을 위한 클라우드 시스템과 지역의 포그 시스템의 융합 시스템이다. 이에 클라우드 시스템은 서비스를 위한 머신러닝과 기반 구조를 제공하고, 포그 시스템은 클라우드와 사용자의 중간에 위치하여 데이터 수집 및 정제를 수행한다. 이를 적용하기 위한 데이터는 스마트기기에서 발생하는 센세 데이터로 한다. 이에 적용된 기계학습 기법은 분류를 위한 SVM알고리즘, 상태 인지를 위한 RNN 알고리즘을 이용한다.

머신러닝을 이용한 3차원 도로객체의 분류 (Classification of 3D Road Objects Using Machine Learning)

  • 홍송표;김의명
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.535-544
    • /
    • 2018
  • 급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.

협동학습을 위한 U-CoMM 시스템 (A U-CoMM System for Cooperative Learning)

  • 이병록;지홍일;신동화;조용환;이준희
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.116-124
    • /
    • 2006
  • 멘토링은 멘토와 멘티의 지속된 관계로 정의된다. 지속적인 관여를 통해서 멘토는 멘티가 새로운 도전에 직면 또는 초기 문제들을 바로잡는데 있어서 안내와 보조, 지원을 제공한다. 협동학습을 위한 멘토링은 고급 사고력, 협력적 능력, 사회성 발달을 포함하여 많은 장점을 가진다. 본 논문에서는 유비쿼터스 환경에서의 멘토와 멘티의 사이버 커뮤니티를 이용한 교수학습 전략을 설계하기 위해서 U-CoMM시스템을 제안하였다. 제안 시스템은 참여자에게 경험과 전문지식을 공유할 수 있는 캠퍼스 멘토링 프로그램을 제공한다. 실험결과 제안 시스템은 기존 시스템보다 협동학습에 있어 교육적 효과가 있음을 보여주었다.

  • PDF

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

양식장 환경 데이터 모니터링 및 예측 시스템의 설계 (Design of the Environmental Data Monitoring and Prediction System for the Fish Farms)

  • 리타 리자얀티;아쉬위니 카담;아리아 비스마 와휴타마;이본영;황민태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.178-180
    • /
    • 2021
  • 본 논문에서는 바다 환경의 변화로 인한 양식장의 피해를 막을 수 있도록 양식장의 환경 데이터를 실시간 모니터링하고 기계 학습 기반의 예측 서비스를 제공하는 시스템 설계를 다룬다. 제안 시스템은 양식장의 주요 위치에 수소 농도, 염도, 용존 산소량 그리고 수온을 측정할 수 있는 센서들로 구성되는 사물인터넷 기반의 디바이스 모듈을 설치하며, 이들로 부터 수집한 데이터는 LTE 또는 LoRa 통신 기술을 이용해 클라우드 DB로 전송한 후 웹사이트나 모바일 애플리케이션을 통해 실시간으로 양식장의 환경 데이터 모니터링을 가능하게 한다. 아울러 수집된 데이터를 활용한 기계학습 기반의 예측 기술을 적용해 양식장의 환경 변화에 미리 대비할 수 있도록 하는 기능을 가진다.

  • PDF

사이버대학 실기교육을 위한 앱기반 인터페이스 연구 (The app-based interface research for practical education of cyber university)

  • 박기홍;장혜숙
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.19-24
    • /
    • 2012
  • Recently, universities have difficulties in operating the normal curriculum because fresher's basic academic ability is declined. It causes campus misfits so managing students become a rising issue. The education system that focuses only on college entrance exam is one of the reasons why this phenomenon occurred. So, several tries are enacted at university to improve this problem. One of the solutions is enforcing the activity with self-directed Learning Community students to know learning level themselves and execute systematic studying habit is essential for improving this problem. This activity can help students understanding and having interest in class and be motivated to study. But it had burdened tutors with submitting activity report in written form. In this paper, we suggest the Mobile Based Activity Report Submission System which can be the solution of the problem that the Self-directed Learning Community System has. This system reduces the emotional burden to write the reports and manages them efficiently.