For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.
Security plays a vital role and is the key challenge in Mobile Ad-hoc Networks (MANET). Infrastructure-less nature of MANET makes it arduous to envisage the genre of topology. Due to its inexhaustible access, information disseminated by roaming nodes to other nodes is susceptible to many hazardous attacks. Intrusion Detection and Prevention System (IDPS) is undoubtedly a defense structure to address threats in MANET. Many IDPS methods have been developed to ascertain the exceptional behavior in these networks. Key issue in such IDPS is lack of fast self-organized learning engine that facilitates comprehensive situation awareness for optimum decision making. Proposed "Intelligent Behavioral Hybridized Intrusion Detection and Prevention System (IBH_IDPS)" is built with computational intelligence to detect complex multistage attacks making the system robust and reliable. The System comprises of an Intelligent Client Agent and a Smart Server empowered with fuzzy inference rule-based service engine to ensure confidentiality and integrity of network. Distributed Intelligent Client Agents incorporated with centralized Smart Server makes it capable of analyzing and categorizing unethical incidents appropriately through unsupervised learning mechanism. Experimental analysis proves the proposed model is highly attack resistant, reliable and secure on devices and shows promising gains with assured delivery ratio, low end-to-end delay compared to existing approach.
Q-learning is a recent reinforcement learning algorithm that does not need a modeling of environment and it is a suitable approach to learn behaviors for autonomous agents. But when it is applied to multi-agent learning with many I/O states, it is usually too complex and slow. To overcome this problem in the multi-agent learning system, we propose the successive Q-learning algorithm. Successive Q-learning algorithm divides state-action pairs, which agents can have, into several Q-functions, so it can reduce complexity and calculation amounts. This algorithm is suitable for multi-agent learning in a dynamically changing environment. The proposed successive Q-learning algorithm is applied to the prey-predator problem with the one-prey and two-predators, and its effectiveness is verified from the efficient avoidance ability of the prey agent.
본 연구의 목적은 모바일 애플리케이션을 활용하여 공손 영어 표현 학습의 가능성을 고찰하고자 하는 것이다. 의사소통 능력의 향상을 도모하기 위해서는 문법적, 담화 능력 외에도 사회 언어적 능력이 필요하다. 상대방이 누구인지, 어떠한 대화 상황에 직면했는지, 대화의 주제나 목적 등에 따라 사회적 가치에 맞는 적합한 표현을 구사할 줄 알아야 한다. 상대방의 지위나 나이가 화자보다 높거나 상대방과의 친밀도가 낮을 경우 한국인 화자는 공손한 표현을 구사하게 된다. 한국어는 언어 자체적으로 경어 체계를 지니고 있지만 영어는 이와 다르기 때문에 학습자들은 영어의 공손 표현을 학습할 필요가 있다. 이를 위해 공손 언어 학습에 학습자들이 교실에서 누구나 쉽게 사용할 수 있는 모바일을 접목시키고자 한다. 학습 교재로는 영국의 시대극 "다운튼 애비"(Downton Abbey)를 이용하였는데 이 드라마는 귀족들의 삶을 중심으로 다루었기 때문에 공손 표현을 학습하기에는 매우 적합하다. 모바일 활용을 통한 공손 영어 학습의 효율성과 모바일 애플리케이션의 활용 가능성을 고찰하기 위해 네이버 밴드를 활용한 실험반과 일반적인 팀별 활동을 중심으로 한 통제반을 설정하였다. 두 반의 공손 언어 학습 효과를 확인하기 위해 두 번의 평가가 시행되었고 개방형 설문조사가 실시되었다. 평가 결과 모바일 애플리케이션의 사용은 공손 영어 표현 학습에 긍정적인 효과가 있었으며 모바일이 수업 후 활동으로 사용하기에 효율적인 학습 도구인 것으로 나타났다. 개방형 설문 조사에서 학습자들은 공손 표현을 우아하거나 고급스러운 언어 형식으로 인지하거나 실용적 표현과 구분하는 경향이 있었다. 시대극을 이용하여 공손 언어를 교수할 경우 교수자들은 현대 영어와의 접목을 고려할 필요가 있겠다.
기계학습은 최근 대부분의 분야에서 적용하여 연구를 하고 있다. 이것은 기계학습의 결과가 결정된 것이 아니라 입력데이터의 학습으로 목적함수를 생성하고, 이를 통해 통하여 새로운 데이터에 대한 판단이 가능하기 때문이다. 또한, 축적된 데이터의 증가는 기계학습 결과의 정확도에 영향을 미친다. 이에 수집된 데이터는 기계학습에 중요한 요인이다. 제안하는 본 시스템은 서비스 제공을 위한 클라우드 시스템과 지역의 포그 시스템의 융합 시스템이다. 이에 클라우드 시스템은 서비스를 위한 머신러닝과 기반 구조를 제공하고, 포그 시스템은 클라우드와 사용자의 중간에 위치하여 데이터 수집 및 정제를 수행한다. 이를 적용하기 위한 데이터는 스마트기기에서 발생하는 센세 데이터로 한다. 이에 적용된 기계학습 기법은 분류를 위한 SVM알고리즘, 상태 인지를 위한 RNN 알고리즘을 이용한다.
급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.
멘토링은 멘토와 멘티의 지속된 관계로 정의된다. 지속적인 관여를 통해서 멘토는 멘티가 새로운 도전에 직면 또는 초기 문제들을 바로잡는데 있어서 안내와 보조, 지원을 제공한다. 협동학습을 위한 멘토링은 고급 사고력, 협력적 능력, 사회성 발달을 포함하여 많은 장점을 가진다. 본 논문에서는 유비쿼터스 환경에서의 멘토와 멘티의 사이버 커뮤니티를 이용한 교수학습 전략을 설계하기 위해서 U-CoMM시스템을 제안하였다. 제안 시스템은 참여자에게 경험과 전문지식을 공유할 수 있는 캠퍼스 멘토링 프로그램을 제공한다. 실험결과 제안 시스템은 기존 시스템보다 협동학습에 있어 교육적 효과가 있음을 보여주었다.
In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).
본 논문에서는 바다 환경의 변화로 인한 양식장의 피해를 막을 수 있도록 양식장의 환경 데이터를 실시간 모니터링하고 기계 학습 기반의 예측 서비스를 제공하는 시스템 설계를 다룬다. 제안 시스템은 양식장의 주요 위치에 수소 농도, 염도, 용존 산소량 그리고 수온을 측정할 수 있는 센서들로 구성되는 사물인터넷 기반의 디바이스 모듈을 설치하며, 이들로 부터 수집한 데이터는 LTE 또는 LoRa 통신 기술을 이용해 클라우드 DB로 전송한 후 웹사이트나 모바일 애플리케이션을 통해 실시간으로 양식장의 환경 데이터 모니터링을 가능하게 한다. 아울러 수집된 데이터를 활용한 기계학습 기반의 예측 기술을 적용해 양식장의 환경 변화에 미리 대비할 수 있도록 하는 기능을 가진다.
Recently, universities have difficulties in operating the normal curriculum because fresher's basic academic ability is declined. It causes campus misfits so managing students become a rising issue. The education system that focuses only on college entrance exam is one of the reasons why this phenomenon occurred. So, several tries are enacted at university to improve this problem. One of the solutions is enforcing the activity with self-directed Learning Community students to know learning level themselves and execute systematic studying habit is essential for improving this problem. This activity can help students understanding and having interest in class and be motivated to study. But it had burdened tutors with submitting activity report in written form. In this paper, we suggest the Mobile Based Activity Report Submission System which can be the solution of the problem that the Self-directed Learning Community System has. This system reduces the emotional burden to write the reports and manages them efficiently.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.