• Title/Summary/Keyword: mobile learning system

Search Result 456, Processing Time 0.025 seconds

A Study on Real Time Control of Moving Stuff Action Through Iterative Learning for Mobile-Manipulator System

  • Kim, Sang-Hyun;Kim, Du-Beum;Kim, Hui-Jin;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • This study proposes a new approach to control Moving Stuff Action Through Iterative Learning robot with dual arm for smart factory. When robot moves object with dual arm, not only position of each hand but also contact force at surface of an object should be considered. However, it is not easy to determine every parameters for planning trajectory of the an object and grasping object concerning about variety compliant environment. On the other hand, human knows how to move an object gracefully by using eyes and feel of hands which means that robot could learn position and force from human demonstration so that robot can use learned task at variety case. This paper suggest a way how to learn dynamic equation which concern about both of position and path.

Mobile App Recommendation with Sequential App Usage Behavior Tracking

  • Yongkeun Hwang;Donghyeon Lee;Kyomin Jung
    • Journal of Internet Technology
    • /
    • v.20 no.3
    • /
    • pp.827-838
    • /
    • 2019
  • The recent evolution of mobile devices and services have resulted in such plethora of mobile applications (apps) that users have difficulty finding the ones they wish to use in a given moment. We design an app recommendation system which predicts the app to be executed with high accuracy so that users are able to access their next app conveniently and quickly. We introduce the App-Usage Tracking Feature (ATF), a simple but powerful feature for predicting next app launches, which characterizes each app use from the sequence of previously used apps. In addition, our method can be implemented without compromising the user privacy since it is solely trained on the target user's mobile usage data and it can be conveniently implemented in the individual mobile device because of its less computation-intensive behavior. We provide a comprehensive empirical analysis of the performance and characteristics of our proposed method on real-world mobile usage data. We also demonstrate that our system can accurately predict the next app launches and outperforms the baseline methods such as the most frequently used apps (MFU) and the most recently used apps (MRU).

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.

Lightweight CNN based Meter Digit Recognition

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Image processing is one of the major techniques that are used for computer vision. Nowadays, researchers are using machine learning and deep learning for the aforementioned task. In recent years, digit recognition tasks, i.e., automatic meter recognition approach using electric or water meters, have been studied several times. However, two major issues arise when we talk about previous studies: first, the use of the deep learning technique, which includes a large number of parameters that increase the computational cost and consume more power; and second, recent studies are limited to the detection of digits and not storing or providing detected digits to a database or mobile applications. This paper proposes a system that can detect the digital number of meter readings using a lightweight deep neural network (DNN) for low power consumption and send those digits to an Android mobile application in real-time to store them and make life easy. The proposed lightweight DNN is computationally inexpensive and exhibits accuracy similar to those of conventional DNNs.

Design and implementation of Distance Learning System using 3 Dimensional Animation Control Technology (3차원 애니메이션 제어 기술을 활용한 원격교육시스템 설계 및 개발)

  • Im, Choong-Jae
    • Journal of Korea Game Society
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2016
  • Distance learning systems that teacher and learner(s) are located at remote have been in progress in a way that directly transfer the video and audio. To get the interest of learners and effectiveness of education or to overcome the poor network environment, various methods utilizing computer graphics in the distance learning system have been attempted. This paper describes a design and implementation of a distance learning system using 3D animation control technology based on Kinect and network game technology. Distance learning system designed and implemented in this paper is a good example of combining education and game technology. And I expect to be used at various educational contents in the future.

A Reinforcement learning-based for Multi-user Task Offloading and Resource Allocation in MEC

  • Xiang, Tiange;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.45-47
    • /
    • 2022
  • Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes

The Component based U-Learning System using Item Response Theory (문항반응이론을 이용한 컴포넌트 기반의 U-러닝 시스템)

  • Jeong, Hwa-Young
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.127-133
    • /
    • 2007
  • The u-learning environment has been developed through a number of iterations, and has now been formally evaluated, through analysis of student learning results and the use of quantitative and qualitative measures, Generally, for advance learning effect and analysis of student learning results, the most learning system be use to the item analysis method. But, nowadays, it has using the IRT(Item Response Theory) instead of the item analysis method, The IRT adopts explicit models for the probability of each possible response to a test. Therefore, I proposed the lightweight component based u-learning system using the IRT. Applied device of u-learning is PDA which is in Windows mobile 5.0 environments.

  • PDF

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.

Weighted Voting Game and Stochastic Learning Based Certificate Revocation for the Mobile Ad-hoc Network (이동 애드 혹 네트워크 환경에서 가중투표게임과 확률러닝을 이용한 악의적인 노드의 인증서 폐지 기법)

  • Kim, Min Jung;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.7
    • /
    • pp.315-320
    • /
    • 2017
  • In this paper, I design a new scheme that is immune to malicious attack based on the weighted voting game. By using stochastic learning, the proposed scheme can revoke the certification of malicious node. Through the revocation process, the proposed scheme can effectively adapt the dynamic Mobile Ad hoc network situation. Simulation results clearly indicate that the developed scheme has better performance than other existing schemes under widely diverse network environments.

The Study on the educational technology utilization of E-learning (E-learning의 교육적 기술의 활용에 관한 연구)

  • Kim, Kyung-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.189-191
    • /
    • 2014
  • This paper provides an overview of the E-learning service education on the last decade, In the early 2000's the emphasis of educational technology was on interactive multimedia- stand alone packages on computer hard disks or portable memory, which integrated a range of media forms in the lately. Customers handle finding the best sources of content.The system then uses social signals such as those coming from Facebook, Twitter, LinkedIn, delicious as well as clicks and views. The SNS and network infrastructure is sufficiently mature that the focus should shift to how to use the technology most appropriately to facilitate learning. As we study environmental conditions of the traditional internet and the mobile internet users in some ways. In this paper, analyze the nature of learning, role of educational and suggest alternative policy, innovation of e-learning service and effective e-learning environment in developing technology.

  • PDF