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Abstract

This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in

dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving

practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of

the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth

models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural

network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the

obstacles.

Key words : Evolvable neural networks, Developmental Model, Adaptive learning interval , L-system, DNA coding.

1. Introduction

Evolutionary neural networks (ENNs) adopt the concept of
biological evolution as an adaptation mechanism [1][2][3].
ENNs with direct coding of architecture [4]-[6]. use one-to-one
mapping of genotype and phenotype. ENNs with direct
encoding may not be practical except for small size neural
networks due to high computational cost. The networks lack
scalability as the size of the genetic description of a neural
network grows as the network size increases [6]. Indirect
encoding [7]-[12] can construct ENNs with complex network
structures having repeated substructures in compact genotypes
by recursive application of developmental rules. Development
refers to an organization process in biological organisms, an
indirect genotype-to-phenotype mapping.
[13][14][15]
mathematical model of a biological development process in

Lindenmayer-system (L-system) provides a
multi-cellular organisms as a special class of fractal. A
development begins with an initial string (axiom) that consists
of symbols (modules) with associated numerical parameters.
Rewriting (production) rules replace all modules in the
predecessor string by successor modules. This feature makes L-
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system especially suitable for describing fractal structures, such
as cell divisions in biological organisms and modeling the
growth of plants in computer graphics. Boers et al. [9] and
Gruau [10] propose neural network design methods based on L-
systems and the GAs. Kodjabachian et al. [7] develops a neuro-
controller based on the Gruau model.

Developmental models require an appropriate encoding
scheme. Encoding methods based on tree structure may not be
suitable to represent production rules in developmental models.
A coding scheme inspired by biological DNA offers advantages
over conventional coding methods [16][17][18]. DNA coding is
suitable for representing the developmental rules, and shows
good performance when longer chromosomes are required.
DNA coding shows floating representations that do not have a
fixed location for interpretation. DNA coding can arbitrarily
represent developmental rules without the limitations of the
length and the number of rules.

This paper presents an evolvable neural network model that
grows from a simple structure to a network with higher
connection complexity according to the developmental rules.
The network consists of a set of homogeneous neurons and
associated connection weights with lateral connections. The
network model is developed using the production rules
represented by a DNA coding. A chromosome in DNA coding
represented an individual network. The chromosomes are
mapped the set of production rules of the L-system.
Evolutionary algorithms update the chromosome represented by
the DNA coding using evaluation. The evolved neural network
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demonstrates the potential of evolutionary neural networks for

navigation control of autonomous mobile robots.

2. Evolvable Neural Network Representation

2.1 DNA Coding

Biological immune system (BIS) is the 2nd defensive system
th Motivated by biological DNA, DNA coding uses four
symbols A4 (Adenine), G (Guanine), 7 (Tymine), and C
(Cytocine) that denote nucleotide bases [17], not a binary
representation as in the GA. A chromosome is represented by
three successive symbols called a codon. A DNA code that
begins from a START codon (474 or ATG) and ends at a STOP
codon (TAA, TAG, TG4, or TGG) is translated into a meaningful
code. This representation of chromosome can have multiple
interpretations since the interpretations of START and STOP
codons allow overlaps as shown in Fig. 1. The length of
chromosomes varies. DNA coding has floating representations
without fixed crossover points. Wu and Lindsay [19] proved that
floating representation is effective for the representation of long
chromosomes by schema analysis in GAs. The diversity of
population is high since the DNA coding has a good parallel
search and recombination ability. The DNA coding method can
encode developmental rules without limitation of the number
and the length of rule. DNA coding requires a translation table
to decode codons. A codon is translated into an amino acid
according to a translation table in Table 1. For example, a codon
AGG is translated into an amio acid AA15. START codons AT4
and ATG are translated into AA3 within the chromosome.

Table 1. DNA Code Translation Table

Codon Am'x 10| odon Am} 10 | odon Am_1 10 | odon Am_mo
acid acid acid acid

TTT TCT TAT TGT

TIC | 0 | TCC | , .o | TAC AA9 | pge | AADS
TTA TCA TAA STOP TGA STOP
TTG TCG TAG TGG

CTT CCT CAT CGT

CTC CcccC CAC CGC

CTA AA2 CCA AA6 CAA AA10 CGA AAl4
CTG CCG CAG CGG

ATT AA3 ACT AAT AGT

ATC ACC AAC AGC

ATA | A3 | ACA | AA7 | aaa | AAL | aga | AADS
ATG |START| ACG AAG AGG

GTT GCT GAT GGT

GTC GCC GAC GGC

GTA AA4 GCA AA8 GAA AAl12 GGA AAl6
GTG GCG GAG GGG

Fig. 1 shows an example of how to translate a DNA sequence.
Two different translations are possible since any three symbols
are grouped to a codon starting from different positions. Gene 1
is obtained from a START codon (47G) to a STOP codon

(TGA). Gene 2 appears from ATG to another STOP codon (TAA4).
The two genes overlap. Gene 1 results in a sequence of amio
acids (protein) AA15-AA13-AA14-AA15-AA6, while Gene 2
gives AAG-AAB-AA2-AAT.

Gene 1 ‘STARTEAA]5§AA]3§AA14EAA15;AA6 g STOP ’
CGATGCGGGAATGCCGGCCCTGACATAACT...
Gene 2 1STARTE AAG | AAS 1AA2 | AAT ! STOP|

Fig. 1. Gene translation of a DNA sequence

Fig. 2 illustrates how the crossover and mutation operations
work in DNA coding. In Fig. 2 (a), two parent chromosomes
containing genes 1, 2 and 3, 4, 5 produce two offspring
chromosomes with genes 1, 6 and 2, 3, 7, and 8 using a one-
point crossover operation. The crossover point is not at the same
location of two chromosomes. The lengths of the chromosomes
become different before and after crossover. Fig. 2(b) shows a
mutation operation. Selected base will be changed to one of the
other three bases. For example, base C in gene 1 becomes to
base G.

ATCATGGCCATTTAGGCTATCATGCGTAGGTAGCTAC
| | ——
Gene 1 Gene 2

Gene 4
[ !
CGATGCTTCATGCTTAGGCAGCATGAGGTCTAGCTAGTAC
L 7 S R |

Lt

ATCATGGCCATTTAGGCTATGTCTAGCTAGTAC
L7 | I

Gene 3 Gene 5

Gene | Gene 6

Gene 2

I

[
CGATGCTTCATGCTTAGGCAGCATG& CATGCGTAGGTAGCTAC
[ o

Gene 7

Gene 3 Gene 8
(a) Crossover

ATCATGGACATTTAGGCTATGTCTAGCTAGTAC

L

ATCATGGTTTAGGC TATGTCTAGCTAGTAC
L= | | S

Gepne | Gene 6

Gene 17 Gene 6

(b) Mutation
Fig. 2. Evolutionary operations

2.2 L-systems

A simple L-system can be defined as a grammar of string
written in the form G={V,P,w}, where V ={A4,4,,-,4,}
is a finite set of alphabets 4,. P={p,p,,-:,p,} denotesa set
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of production rules p, =p(4). o is an initial string
(combination of alphabets), commonly referred to as an axiom.
A production rule p:¥ — V" maps alphabets to a set V' of
finite strings. Let S, denote a string in the k-th rewriting step.

The rewriting procedure can be described as

k

S, =p*(S))=popo--op(5)S (1)

where ‘o’ denotes a composite operator of the rewriting
operation p. The first rewriting step gives S, = p(S,) with
Sy=w, and S, = p(S)) = p(p(S,)) = (pe p)S,) = P°(S,).
For example, consider a simple L-system with three alphabets
V ={4,B,C}. Suppose G={V,P,w}
have a set of developmental rules P = {p(4), p(B), p(C)} with
p(A)=B4, p(B)=CB, and p(C)=AC. Applying the
production rules to the axiom @ = ABC result in the strings:

the growth model

Sy = p(S,) = p(4BC) = p(A)p(B) p(C) = BACBAC ~ (2)

S, = p(S,) = p(BACBAC)

= p(B)p(4) p(C)p(B) p(A) p(C) = CBBAACCBBAAC ®

3. Design of Evolvable Neural Networks Based on
Developmental Models

3.1 Structure of Evolvable Neural Networks

The proposed evolvable neural network model consists of an
array of neurons whose structure grows according to the
developmental rules. A string of N symbols nn,---n,,
generated from a set of production rules, finds a neural network
i=12,---,N. Fig. 3 shows the structure

of the evolvable neural network based on a developmental

with N nodes, #,,

i

model. There are L input nodes and M output nodes.

e
[ Q Q )

Fig. 3. Structure of the evolvable neural network with
developmental models.

Nodes are connected with the connection range of the form (x,
y). A pair of integers x and y (1<x<y ) configures the
connection between the neighboring nodes. The parameter x
denotes the index of the first node to be connected from a base
node. The parameter y indicates the last node to be connected.
Fig. 4 illustrates the connection of the neurons. A node at /-th
location is connected to all the neurons between (/+x)-th and

(/+y)-th locations. Input nodes are not connected with each other.

Therefore, the indices of the first and last nodes become (/Hm+x)
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and (Hmty) since connection begins after skipping input

neurons.

! Hm [+m+1

I+mty

[+mtx

Fig. 4. Connection of nodes with a connection range (x, y).

An evolutionary neural network is constructed from a string

according to the following procedures.

1. Determine the numbers of input (L) and output (M).

2. Set the first L and the last M characters in a string to input
and output neurons. All the others are set to hidden
neurons. If the total characters in a string are fewer than
L+M, then stop the construction.

3. Add M neurons as output nodes next to output neurons.

4. Connect all neurons according to connection range and the
weights.

Input and output neurons are not connceted with the neurons

of the same type. Input neurons use linear activation functions
while hidden and output neurons use bipolar sigmoid functions.

3.2 DNA Coding of Production Rules

A DNA chromosome is translated into an amino acid and then
into a production rule of L-system. The L-system for a mobile
V={4,B,C,D}. The
maximum connection range is set to 5. Table 1 converts an

robot control uses four alphabets
amino acid to a node name and connection range. Each node
name (alphabet) is assigned to four types of amino acid. In this
case, the second base of amino acid determines the node name.
The first and the third bases are don’t care nodes. Connection
range is assigned to one amino acid since the conncetion range
between nodes has 15 types ((1,1) (1,2), ..., (5,5)). The third
base of the connection range is redundant. Coding redundancy
using don’t care bases enables to increase the effciency of
overlapping genes. If the two useful genes are combined, these
two genes will spread easily in the population.

Table 2. Translation Table of Amino Acids

Amino | Node Connec- | Amino | Node Connec-
acid | name | tion range acid | name | tion range
AAl A (1,4) AA9 C (1,5
AA2 A (LD AAL0 | C (3.3)
AA3 A (1,3 AAll C (3,5
AA4 A (1,2) AAIL2 C (3.4
AAS B (2,5) AAI3 | D (15)
AA6 | B 2.2 AAl4 | D (4.,4)
AA7 B 2.4 AA1S D (5,5)
AAS8 B (2,3) AAL6 D 4,5)

A production rule of L-system consists of alphabets, which
are interpreted as nodes. The predecessor has only node but the
alphabet of the successor has node name with conncetion range,
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bias, and weights. Fig. 5 shows a production rule of the form
p(4A)=B with connection range (x, y). A production rule is
composed of nine codons corresponding a predecessor node, a
successor node, a connection range, a bias, five connection
weights. Five weights are needed since the maximum
connection range is set to 5. A single predecessor node can have

multiple sucessor nodes as in the rule p(4) = BC.

Connection
Node(P) Node(S) Range Bias Weights
A B (x.) Wy | W, Wy, W, Wy, W

Fig. 5. DNA coding of a production rule

Bias and weights are real values calculated by Eq. (4). The
bias and weights have values of bound from -3.2 to 3.1 at 0.1
intervals.

(b4 b4 by 4032

m “

where by, by, and b, are the three DNA symbols of the codon
(e.g. ACG). The values of each DNA symbolare 7=0,C=1, 4
=2,and G =3.

Fig. 6 shows an example of translating a DNA code into a
production rule. Two production rules can be created since two
START codons (ATG) exist in the chromosome. The codon TAC
followed by ATG is translated to AA9 (Node C) according to
Table 2. The next codon CGG is translated to AA14 (Node D).
The next codon (CGT) is also translated to AA14, which
corresponds to the connection range (4,4). The following codon

(GAA) denotes a bias of the value 2.6 (=[3x42+2x4‘+2><4°-.

32)/10). The next five codons determine weight values. This
procedure is repeated for the next production rule until the
STOP codon is met. The first rule is represented by p(C) =
D(4,4)4(4,5). The second rule p(B) = D(1,5) is obtained from
the different reading frame. Not-used codons are denoted by
‘NU.” If multiple rules have the same predecessor but different
successors as in p(4A)=B and p(A4)=CB, only the first rule
p(4)=28 is used, and the others are eliminated. If no rule is

found for a predecessor A4;,arule p(4;)=4; isused
Rule 1 ‘snm AA9 [AAL4AALE P AAZAA|6 | P i smv|
CGATGTACCGGCGTGAATGCCGGGGTCCACGGCTCGGGACAACCACCGTTAGCGTTGATTAACG ;
Rule 2 ST\I(I AAG AAlo AA13 i NUiNU: NL STOP|

predecessor SUCCESSOr

{AA9) (AA14) (AA14) GAA TGC CGG GGT CCA CGG | (AA2) (AA16) ACA ACC ACC GTT AGC GIT
Rule 1

C D (44) 26-19-0128-10 01 | A (45 06 05 05 1613 16

(AAG) [ (AAI6) (AAI3) ACG GCT CGG GAC AAC CAC
Rule 2

B D (15) 07 20-01 25 0907

Fig. 6. Interpretation of production rules from a DNA code.

4, Experiment Results

The evolvable neural network developed in the previous
section is applied to the mobile robot navigation control problem.
The goal is to make a mobile robot find the target as fast as
possible and to avoid collisions with the obstacles. Autonomous
mobile robots decide an action at each time step by sensing the
environment. A Khepera mobile robot is used to test how to
develop an evolvable neural network controller. Fig. 7(a) shows
a Khepera robot with a linear vision turret. The mobile robot
detects near objects using eight (six front and two rear) IR
proximity sensors. The sensing range is approximately 50 mm.
A linear vision sensor finds the target by 64x1 pixels in 256
gray levels.

() (b)
Fig. 7. (a) A Khepera robot with vision turret, (b) Sensors

A neural network controller has 6 inputs (5 IR sensors and a
vision sensor) and 2 outputs. The sonsors s, and s, are
connected together to produce a single input s,, . Two rear IR
sensors are not used. IR sensors are scaled as the value in the
range [0, 1] but the vision sensor has a binary value {-1,1}. If
the target is on the left then the vision sensor gives -1, otherwise
1. The output from neural network is the values between 0 and 1.
To evolve the neural network controller, the fitness function is
chosen as:

d c

max

CRJ (5)

1(d...—dps ¢ —
Fitness = _(L& 4omax "R
max

where d_,.  denotes the maximum distance from start point to

the target, d, is the distance from the robot to the target, c_,,
is predefined value of maximum number of collisions, and ¢,
then
. The parameters of experiment are set as follows;
The size of work space is 700x700 mm. d__ is 6002 , and

C... Was set to 100. The number of populations is 200, the

max

is the number of collisions. If ¢, is greater than c_,,

cp = ¢

probability of crossover is 0.8, the probability of mutation is
0.05, and the initial length of chromosome is 1,000. Fig. 8
displays the fitness change through the evolution. The mobile
robot with the evolved neural network controller finds the target
without collision in 95 generations and therefore reached the
maximum fitness value.
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Fig. 8. Transition of fitness for mobile robot navigation

To construct a neural network, the L-system with grammar G
= {V, P, w} is used, where V= {4, B, C, D}, P= {p\, P2, P3, Pa}»
and @= A. The production rules are as follows:

p, = p(4) = 4(5,5)C(1,2)D(2,3)B(2,4)
P, = p(B) = D(1,5)B(2,4)C(1,4)

ps = p(C) = A(3,3)D(L,4)C(2,4)

py = p(D)=B(4,5)

The neural network is created from three rewriting steps using
evolved rules. A node of NM(x,y), N is an alphabet that represents
a node, x and y are the parameters that show the connection
range. Using these rule and @, we can obtain the following
strings, S|, S,, and S; after three rewriting steps:

S, 1 A(5,5)C(1,2)D(2,3)B(2,4)
S, 1 A(5,5)C(1,2)D(2,3)B(2,4) A(3,3)D(1,2)C(2,4)B(4,5)
D(1,5)B(2,4)C(1,4)
S, : ACDBADCBDBCACDBBADCDBCBDBCADC .
Fig. 9 shows the evolved network architecture obtained from

the string S,. The string obtained from S; is discarded since the
network shows low performance.

Fig. 9. An evolved neural network from the string S5.

The maximum rewriting step should be determined. As
rewriting steps increase, a neural network tends to grow. If the
network is bigger than the best individual in the previous
generation, then the rewriting process will be stopped.

Fig. 10 shows a simulation environment, with a starting point
on the bottom left and the target point on the top right corner. A
mobile robot is controlled to navigate from the starting point to
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reach the target without collisions with the obstacles. The neural
network controller developed in the maze in Fig. 4(a) shows
good navigation performances in testing maze given in Fig. 4(b).

(a) Evolution

(b) Testing
Fig. 10. Simulation environments and navigation result of
using evolved neural network.

5. Conclusion

This paper proposes a combined method of L-systems and
DNA coding for developing evolutionary neural networks. The
goal is to design a self-organizing modular neural network based
on development and evolution. L-system, developmental model
is used to design the architecture of neural network and DNA
coding is used to encode the production rule of L-system. To
evaluate the effectiveness of our scheme, we applied proposed
evolvable neural network to designing the controller of
autonomous mobile robot for navigation. Autonomous mobile
robot that has evolved neural network controller could go to the
target without collision. A mobile robot with the controller
obtained from the proposed developmental model navigates and
avoids the collisions with obstacles in a new operating

environment.
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