• Title/Summary/Keyword: mobile edge network

Search Result 116, Processing Time 0.026 seconds

A Heuristic Algorithm for Optimal Facility Placement in Mobile Edge Networks

  • Jiao, Jiping;Chen, Lingyu;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3329-3350
    • /
    • 2017
  • Installing caching and computing facilities in mobile edge networks is a promising solution to cope with the challenging capacity and delay requirements imposed on future mobile communication systems. The problem of optimal facility placement in mobile edge networks has not been fully studied in the literature. This is a non-trivial problem because the mobile edge network has a unidirectional topology, making existing solutions inapplicable. This paper considers the problem of optimal placement of a fixed number of facilities in a mobile edge network with an arbitrary tree topology and an arbitrary demand distribution. A low-complexity sequential algorithm is proposed and proved to be convergent and optimal in some cases. The complexity of the algorithm is shown to be $O(H^2{\gamma})$, where H is the height of the tree and ${\gamma}$ is the number of facilities. Simulation results confirm that the proposed algorithm is effective in producing near-optimal solutions.

Performance Analysis of Transport in MANET including Interworking Functionality using the Edge Cost Based Modeling Method (에지코스트기반 모델링 방법에 의한 연동기능이 포함된 MANET의 전달성능 분석)

  • Song, Sang-Bok;Lee, Kyou-Ho;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2593-2600
    • /
    • 2010
  • A growth of mobile and wireless networking technologies have enabled mobile ad hoc networks applicable to a wide range of areas. This paper analyzes dynamics of network transport performance with respect to dynamics of network states especially for the mobile ad hoc networks called MANET. The edge cost based modeling methodology is adopted for the analysis, which can express well the characteristics of MANET. In this methodology the network state at arbitrary time can be specified as one of four edge states. We extracts ten target network scenarios for the simulation analysis by employing not only the Real Edge/Infinity Edge concept but also interworking functionality between different transport protocols. Then we could acquire from simulation of them with the DEVSim++ engine that the more sorts of transport protocols and the more number of interworking nodes are included in the network, the more contribution is for improving network transport performance.

A Novle Method for Efficient Mobile AR Service in Edge Mesh Network

  • Choi, Seyun;Shim, Woosung;Hong, Sukjun;Kim, Hoijun;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.22-29
    • /
    • 2022
  • Recently, with the development of mobile computing power, mobile-based VR and AR services are being developed. Due to network performance and computing power constraints, VR and AR services using large-capacity 3D content have limitations. A study on an efficient 3D content load method for a mobile device is required. The conventional method downloads all 3D content used for AR services at the same time. In this paper, we propose an active 3D content load according to the user's track. The proposed method is a partitioned 3D object load. Edge servers were installed for each area and connected through the MESH network. Partitioned load the required 3D object in the area referring to the user's location. The location is identified through the edge server information of the connected AP. The performance of the proposed method and the conventional method was compared. As a result of the comparison, the proposed method showed a stable Mobile AR Service. The results of this study, it is expected to contribute to the activation of edge server-based AR mobile services.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

A Study on Improving Data Poisoning Attack Detection against Network Data Analytics Function in 5G Mobile Edge Computing (5G 모바일 에지 컴퓨팅에서 빅데이터 분석 기능에 대한 데이터 오염 공격 탐지 성능 향상을 위한 연구)

  • Ji-won Ock;Hyeon No;Yeon-sup Lim;Seong-min Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2023
  • As mobile edge computing (MEC) is gaining attention as a core technology of 5G networks, edge AI technology of 5G network environment based on mobile user data is recently being used in various fields. However, as in traditional AI security, there is a possibility of adversarial interference of standard 5G network functions within the core network responsible for edge AI core functions. In addition, research on data poisoning attacks that can occur in the MEC environment of standalone mode defined in 5G standards by 3GPP is currently insufficient compared to existing LTE networks. In this study, we explore the threat model for the MEC environment using NWDAF, a network function that is responsible for the core function of edge AI in 5G, and propose a feature selection method to improve the performance of detecting data poisoning attacks for Leaf NWDAF as some proof of concept. Through the proposed methodology, we achieved a maximum detection rate of 94.9% for Slowloris attack-based data poisoning attacks in NWDAF.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

QoS Support Mechanisms in Mobile MPLS VPN (이동 MPLS VPN에서의 QoS 지원 방안)

  • Lee Young-seok;Yang Hae-kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Network based VPN(Virtual Private Network) using MPLS(Multiprotocol Label Switching) technology, called PE(Provider Edge router) based MPLS VPN, is regarded as a good solution for intranets or ext3nets because of the low cost and the flexibility of the service provision. In this paper, we describe a mechanism that allows the VPN users to move from one site to another site of the VPN network based on the BGP-E MPLS technology. This mechanism is designed for PE(Provider Edge) routers of the backbone network. PE routers connected to the VPN sites establish a new MPLS path to the mobile node after they detect movement of the mobile VPN node. The new location may belong to the same VPN or to different VPN. We desisted VPN management and control functions of the PE routers in order to interface with the Mobile IP protocol and support the QoS mechanism. The pilot implementation and performance measurement were carried out on a simulation using COVERS tool.