• Title/Summary/Keyword: mm Wave

Search Result 1,023, Processing Time 0.038 seconds

Surface Acoustic Wave Sensor Using Electroactive Paper(EAPap) (Electroactive Paper(EAPap)를 이용한 표면탄성파 센서)

  • Lee, Min-Hee;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1128-1133
    • /
    • 2008
  • Cellulose based electroactive paper(EAPap) has been developed as a new smart material due to its advantages of piezoelectricity, large displacement, low power consumption, low cost and flexibility. EAPap can be used for a surface acoustic wave (SAW) device using the piezoelectric property of EAPap, resulting in the cost effective and flexible SAW device. In this paper, inter digit transducer(IDT) structure using lift-off technique with a finger gap of 10mm was used for micro fabrication of the cellulose EAPap SAW devices. The performance of IDT patterned SAW device was characterized by a Network Analyzer. The feasibility of cellulose EAPap as a potential acoustic device was presented and explained.

Effects of Beam Configuration on Performances of NOMA System for Millimeter Wave Channels

  • Wonkyu Kim;Thanh Ngoc Nguyen;Taehyun Jeon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.59-65
    • /
    • 2024
  • Non-orthogonal multiple access (NOMA) is a technique that forms a NOMA group composed of two or more users and transmits the superimposed signals of all users in the group through a single beam. In case all users in a NOMA group fall within the main lobe, a high data rate is guaranteed. However, in case not all users in the group fall within the main lobe due to the narrow beam width, the sum data rate decreases, and the data rate disparity between users inside and outside the main lobe widens significantly, leading to reduced fairness. On the other hand, an excessively wide beam might reduce the channel gain which lowers the sum data rate. This paper discusses the effects of beam configuration on the throughput and fairness performances of the NOMA system in the millimeter wave channel environments with simulation results for various channel parameters including the number of antennas and beam directions.

Comparison of the Electrocardiographic Characteristics of Junior Athletes and Untrained Subjects

  • Park, Sang Ku;Kang, Ji-Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • The hearts of highly trained athletes show morphologic and electrocardiographic (ECG) changes that suggest the presence of cardiovascular disease, including sinus bradycardia, a striking increase in precordial R-wave or S-wave voltages, ST segment depression, and T-wave inversions. Despite a number of previous observational surveys, the determinants of abnormal ECG patterns in trained athletes remain largely unresolved. In this study, we compared the electrocardiographic characteristics of athletes to determine any sensitive indicators. Comparison between ECG patterns and cardiac physiology was performed in 21 junior athletes and 25 untrained subjects with no signs of cardiac disease. Sinus bradycardia was detected in a subset of athletes but not statistically significant between the athletes ($69.9{\pm}11.1bpm$) and the control ($72.7{\pm}9.9bpm$) group. The mean values of the PR and QTc intervals in the athletes' group were $149.2{\pm}15.4ms$ and $402.3{\pm}28.8ms$, respectively. Also, there were no significantly differences between control group and the athletes' group. In addition, the athletes demonstrated a spectrum of alterations in the 12-lead ECG pattern, including marked increase in precordial R-wave or S-wave voltages ($$SV_1+RV_5{\geq_-}35mm$$, 23.8%), QRS duration ($${\geq_-}90ms$$, 90.5%), suggestive of left ventricular hypertrophy. However, left axis deviation, ST segment depression, and T-wave changes in V5, V6 were not observed in either the athletes or control group. Our findings suggest that sinus bradycardia, precordial R-wave or S-wave voltages, and QRS duration seem to be more sensitively detected in athletes than in control group. Further researches on the electrocardiographic patterns of athletes should be carried out to improve the sensitivity and specificity of diagnostic criteria.

  • PDF

Design of Ultra Wideband Monopole/Dielectric Resonator Antenna (초광대역 모노폴 유전체 공진기 복합체 안테나 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.22-29
    • /
    • 2013
  • The combined structure of both an annular dielectric resonator and a quarter-wave monopole is proposed to generate an omnidirectional radiation pattern over the wideband frequency range. The monopole works at the lower frequency band and excites the cylindrical dielectric resonator along its center point by electrical coupling mechanism. The rectangular shape of the DR is cut to generate the wideband operation of 4.7-18.2 GHz. The geometrical parameter of cylindrical dielectric resonator is 5.8 mm, 11.6 mm and 6.0 mm in inner diameter, outer diameter and height, respectively.

A comparative study of borehole size and tool effect on dispersion curves (시추공경과 공내검층기가 분산곡선에 미치는 영향에 대한 비교 연구)

  • Zhao, Weijun;Kim, Jong-Man;Kim, Yeong-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.154-162
    • /
    • 2009
  • Sonic wave dispersion characteristics are one of the most important targets of study, particularly in estimating shear wave velocity from borehole sonic logging. We have tested dispersion characteristics using monopole and dipole sources. Theoretical dispersion curves were computed for tool-absent and tool-included models having the same physical properties but different diameters (including ${\Phi}520mm$, ${\Phi}150mm$, and ${\Phi}76mm$). Comparisons were made between boreholes of different sizes and between tool-absent and tool-included models. Between the tool-included and the tool-absent boreholes, a close similarity in dispersion curve shape was revealed for the monopole source, and a significant difference was shown for the dipole source. However, for the cut-off frequency, particularly in the engineering boreholes (${\Phi}76mm$ and ${\Phi}50mm$), a significant difference was observed for signals from the monopole source, but approximately the same cut-off frequencies were found with the dipole source. This indicates the need of careful choice of source frequency in monopole-source sonic logging, particularly in an engineering borehole. The results of numerical experiments show that cut-off frequency is exponentially proportional to the inverse of borehole radius, irrespective of the mode type and the presence of a tool, and that the cut-off frequencies for each borehole environment could be expressed as an exponential function, rather than the inversely proportional relationship between the cut-off frequency and the borehole radius that was previously generally recognised. From the direct comparison of dispersion curves, the effects on the dispersion characteristics of borehole size and the presence of the tool can be revealed more clearly than in previous studies, which presented the dispersion curve and/or characteristics for each borehole environment separately.

Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

  • Kim, Young-Min;Kim, So-Yeon;Cheong, Hae-Kwan;Ahn, Byun-Gok;Choi, Kyu-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.13.1-13.10
    • /
    • 2012
  • Objectives: We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods: Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results: Average indoor and outdoor temperatures were $31.47^{\circ}C$ (standard deviation [SD], $0.97^{\circ}C$) and $28.15^{\circ}C$ (SD, $2.03^{\circ}C$), respectively. Body temperature increased by $0.21^{\circ}C$ (95% confidence interval [CI], 0.16 to $0.26^{\circ}C$) and $0.07^{\circ}C$ (95% CI, 0.04 to $0.10^{\circ}C$) with an increase in the indoor and outdoor temperature of $1^{\circ}C$. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by $1^{\circ}C$, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by $1^{\circ}C$. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by $1^{\circ}C$, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions: The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary.

Lamb wave generation and analysis in a non-ferromagnetic plate using an orientation-adjustable patch-type magnetostrictive transducer (조향 자기변형 트랜스듀서(OPMT)를 이용한 비자성체 판구조물에서 램파 발생 및 신호해석)

  • Lee, Ju-Seung;Sun, Kyung-Ho;Cho, Seung-Hyun;Hong, Jin-Chul;Kim, Yoon-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.542-545
    • /
    • 2005
  • This paper is concerned wi th the generation of the Lamb waves in a non­ferromagnetic plate by a recently-developed orientation-adjustable patch-type magnetostrictive transducer (OPMT) and the dispersion analysis from the measured Lamb waves. OPMT is capable of adjusting wave-propagation orientation only with a single installation on a plate. The mechanics behind the wave generation and measurement by the magnetostrictive phenomenon, the working principle of OPMT is explained and the actual generation and measurement of the Lamb waves were conducted in a 3 mm-thick aluminum plate. For the accurate analysis of the dispersion characteristics of the measured Lamb waves, a modified version of the short-time Fourier transform, known as the dispersion-based short-time Fourier transform, was employed. The results presented in this work would serve as the underlying research for an advanced non-destructive evaluation based on ultrasonic waves.

  • PDF

A Methodology for Compaction Control of Crushed-Rock-Soil-Fills (암버럭-토사 성토 노반의 다짐 관리 방안)

  • Park, Chul-Soo;Hong, Young-Pyo;Joh, Sung-Ho;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF

Investigation of bar parameters occurred by cross-shore sediment transport

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.277-286
    • /
    • 2013
  • Cross-shore sediment transport is very important factor in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial base slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical of sediment transport rate and considerable characteristics of beach profiles under storm conditions and bar parameters affecting on-off shore sediment transport are investigated for the beach materials with the medium diameter of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. Non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.