• Title/Summary/Keyword: mixture lactic acid bacteria

Search Result 138, Processing Time 0.024 seconds

Effect of Lactic Acid Bacteria on the Regulation of Blood Glucose Level in Streptozotocin-induced Diabetic Rats

  • Yeo, Moon-Hwan;Seo, Jae-Gu;Chung, Myung-Jun;Lee, Hyun-Gi
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • To identify the treatment effect of lactic acid bacteria for diabetes, the treatment effects of a single administration of acarbose (a diabetes treatment drug) or lactic acid bacteria, and the mixture of acarbose and lactic acid bacteria on diabetes in a type 1 diabetes animal model, were studied. In this study, streptozotocin was inoculated into a Sprague-Dawley rat to induce diabetes, and sham control (Sham), diabetic control (STZ), STZ and composition with live cell, STZ and composition with heat killed cell, STZ and composition with drugs (acarbose) were orally administered. Then the treatment effect on diabetes was observed by measuring the body weight, blood glucose, and serum lipid. For the histopathological examination of the pancreas, the Langerhans islet of the pancreas was observed using hematoxylin and eosin staining, and the renal cortex, outer medullar, and inner medullar were also observed. The induced diabetes decreased the body weight, and the fasting blood glucose level decreased in the lactic-acid-bacteria-administered group and the mixture-administered group. In addition, the probiotic resulted in the greatest decrease in the serum cholesterol level, which is closely related to diabetes. Also, the hematoxylin and eosin staining of the Langerhans islet showed that the reduction in the size of the Langerhans islet slowed in the lactic-acid-bacteria-administered group. The histopathological examination confirmed that the symptoms of diabetic nephropathy decreased in the group to which viable bacteria and acarbose were administered, unlike in the group to which dead bacteria was administered. The mixture of lactic acid bacteria and acarbose and the single administration of lactic acid bacteria or acarbose had treatment effects on the size of the Langerhans islet and of the kidney histopathology. Thus, it is believed that lactic acid bacteria have treatment effects on diabetes and can be used as supplements for the treatment of diabetes.

Production of Polyphenols and Flavonoids and Anti-Oxidant Effects of Lactic Acid Bacteria of Fermented Deer Antler Extract

  • Kim, Hyun-Kyoung;Choi, Kang-Ju;Ahn, Jong-Ho;Jo, Han-Hyung;Lee, Chang-Soon;Noh, Ji-Ae
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.197-208
    • /
    • 2021
  • The deer antler has been used as a major drug in oriental medicine for a long time. Recently, the demand for easy-to-take health functional foods is increasing due to economic development and changes in diet. As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. Lactic acid bacteria fermentation was performed by adding 4 types of lactic acid bacteria starter products, B. longum, Lb. Plantarum, Lb. acidophilus and mixture of 8 types of lactic acid bacteria to the antler water extract substrate, respectively. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107 ~ 2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26 ㎍/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 ㎍/mL. The total flavonoid contents were 1.52~2.21 ㎍/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59 ~ 8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.

Lactic Acid Bacteria Mixture as Inoculants on Low Moisture Italian Ryegrass Silage Fermentation

  • Soundharrajan, Ilavenil;Kuppusamy, Palaniselvam;Park, Hyung Soo;Kim, Ji Hea;Kim, Won Ho;Jung, Jeong Sung;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.127-131
    • /
    • 2019
  • The effects of lactic acid bacteria (LAB) mixtures on low moisture Italian ryegrass (IRG) silage fermentation was evaluated in field conditions. The experiment was categorized into two groups: Un-inoculated (Control) and Inoculated with LAB mixture for four storage periods (45, 90, 180, and 365 days, respectively). Silage inoculated with the LAB mixture had the lowest pH with highest lactic acid production than the control from beginning at 45-365 days at all moistures. Higher LAB counts were observed in inoculated silages than the control silages at whole experimental periods. It is a key reason for the rapid acidification and higher lactic acid production in silages during the storage periods. Overall results suggest that an adding of LAB mixture had positive effects on the increasing aerobic stability of silage and preserved its quality for an extended duration.

Growth Characteristics of Lactic Acid Bacteria in Whey-Soy Milk Mixtures (유청(乳淸)과 두유(豆乳) 혼합액(混合液)에서의 유산균(乳酸菌) 생육특성(生育特性))

  • Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.285-290
    • /
    • 1984
  • Growth characteristics of six lactic acid bacteria in whey-soy milk mixtures were investigated to obtain basic informations for processing cheese-like product by coprecipitation of whey and soy proteins. Streptococcus cremoris and Lactobacillus acidophilus produced more aicd than other lactic acid bacteria both in whey-soy milk mixture and in soy milk. Lactic acid fermentation was accelerated in whey-soy milk mixture than in soy milk with all the lactic aicd bacteria, and specially with S. lactis and S. cremoris in great extent. The number of viable cell of 1:1 mixed culture of S. lactis and S. cremoris in whey soy milk mixture was about 10 times than in soymilk. It was mainly the effect of lactose in the whey that increased the acid production by lactic aicd bacteria in whey-soy milk mixture although the degree of acceleration depended on the ability of microorganism to use carbohydrates. The optimum amount of lactose added to soy milk to accelerate the acid production was 0.8g/100ml soy milk.

  • PDF

Agar Medium for Screening of Urease-Producing Lactic Acid Bacteria (Urease 생산 젖산균의 탐색을 위한 한천 배지)

  • 서인영;이정준;나석환;백영진;신명수
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.288-292
    • /
    • 1993
  • An agar medium(HY) was developed to detect the urease-producing lactic acid bacteria. HY medium was prepared with the addition of tryptone, glucose and tween 80 to the supernatant of autoclaved skim milk and yeast extract mixture. There was no difference in eumeration of lactic acid bacteria between the HY and commercial media, such as M17, MRS and BCP agar. The urease activity of Streptococcus salivarius subsp. thermophilus was detected on the HY agar medium contained urea by the color change of bromocresol purple as the pH indicator, but not on the commerical agar media. Furthermore, it was succeeded to screen the urease activity of bacteria in skim milk used as a raw material in dairy product manufacture. Therefore, HY medium was proved to be suitable for the screening of urease-producing lactic acid bacteria.

  • PDF

Effect of Lactic Acid Bacteria notated to Kimchi Fermentation on the Quality of Bread (김치숙성 관련 젖산균이 식빵의 품질에 미치는 영향)

  • 이예경;박인경;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2001
  • The effects of lactic acid bacteria from kimchi fermentation, specifically Lactobacillus plantarum(LP) and Leuconostoc mesenteroides (LM) on the quality of the bread product was investigated. The two types of bacteria were cultivated in the sterilized radish juice used for kimchi fermentation. The concentration of bacteria was measured at 3.0$\times$10$^{9}$ ~3.3$\times$10$^{9}$ /mL. The bacteria were added at the ratios of 5% and 10% to a mixture with wheat flour before subsequent dough fermentation. An LM+LP treatment to the mixture was also made at 5% of LP and 5% of LM. The measured pH in the dough with LM+LP was the lowest among all of treatments. The products of 5% LM treatment showed the shortest fermentation time. Loaf production by volume was the highest from the 10% LM treatment. The % of moisture loss of the bread during the shelf-storage was less when treated with lactic acid bacteria than when left untreated. The least moisture loss was observed when the bread was treated with the LM+LP mixture. Hardness of the bread also decreased with the presence of lactic acid bacteria. The order of hardness was: control > 5% LP > LM+LP > 5% LM > 17% LM > 10% LP. Staling degree of the bread when treated with lactic acid bacteria was lower than that of the control. The least staling occurred when treated with LM 10% and LP 10%.

  • PDF

Effect of Lactic Acid Bacteria on D- and L-Lactic Acid Contents of Kimchi

  • Jin, Qing;Yoon, Hyang-Sik;Han, Nam-Soo;Lee, Jun-Soo;Han, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.948-953
    • /
    • 2006
  • The D-form of lactic acid is frequently detected in fermented foods, and an excessive dietary intake of D-lactic acid may induce metabolic stress in both infants and patients. This work was carried out to determine the prevailing microorganisms relevant to the accumulation of D-lactic acid in kimchi. Leuconostoc (Leuc.) mesenteroides and Leuc. citreum primarily synthesized D-lactate with a small quantity of L-form. Leuc. gelidum and Leuc. inhae evidenced patterns similar to this. Lactobacillus (Lb.) plantarum and Lb. brevis were shown to convert glucose into a balanced mixture of D-/L-lactic acid, whereas Lb. casei principally synthesized L-lactic acid and a very small quantity of D-lactic acid. When kimchi was incubated at 8 or $22^{\circ}C$, D-lactic acid was over-produced than L-form. Leuconostoc was determined as the primary producer between the initial to mid-phase of fermentation and Lb. plantarum or Lb. brevis seemed to boost D-lactic acid content during later stage of acid accumulation.

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

Effect of Caesalpina sappan L. and Lithospermum erythrorhizon Extract Mixture and Crab Shell on the Fermentation of Kimchi (소목 . 자초 추출혼합물과 게껍질의 첨가가 김치 숙성에 미치는 영향)

  • Lee, Shin-Ho;Park, Kyung-Nam;Lim, Yong-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.404-409
    • /
    • 1999
  • The studies were carried out to investigate antimicrobial activity of mixture of Caesalpina sappan L. and Lithospermum erythrorhizon extracts against lactic acid bacteria isolated from Kimchi. The effects of the mixture and crab shell extracts on the shelf-life of Kimchi were also investigated. The growth of heterofermentative lactic acid bacteria and homofermentative lactic acid bacteria was inhibited by 98% ethanol extracts of Caesalpina sappan L. and Lithospermum erythrorhizon. The pH of Kimchi containing mixed extracts of Caesalpina sappan L. and Lithospermum erythrorhizon extracts (1 : 1) and crab shell was lower than that of control during fermentation for 25 days of $10^{\circ}C$. The viable cells of Lactic acid bacteria of the mixed extracts and crab shell added Kimchi were lower than that of control during fermentation. The sensory quality of the mixed extracts and Crab shell added Kimchi was a little inferior to control for during fermentation of Kimchi.

  • PDF

Anti-inflammatory Effect of Lactic Acid Bacteria Isolated from Kimchi on Acid-induced Acute Colitis in Model Mice

  • Lee, Soo Youn;Sekhon, Simranjeet Singh;Kim, Hyung Cheol;Won, Kyungho;Ahn, Ji-Young;Lee, Kibeom;Kim, Yang-Hoon
    • Toxicology and Environmental Health Sciences
    • /
    • v.9 no.5
    • /
    • pp.279-282
    • /
    • 2017
  • Lactic acid bacteria (LAB) provide numerous beneficial effects on the host body, especially on the intestine. Two LAB strains isolated from Kimchi, Leuconostoc mesenteroides and Lactobacillus sakei, were studied for its anti-inflammatory activity in acidinduced acute colitis in mice. To induce acute colitis in model mice (C57BL/6), 3% of dextran sulfate sodium treatment was treated for 7 days. Assessment of necropsy and histopathology analysis showed that oral supplementation of both L. mesenteroides and L. sakei ameliorated the symptoms of acute colitis. Moreover, the mixture of L. meseneroides and L. sakei showed synergistic effect on colitis. The results suggest that the formulation of L. mesenteroides and L. sakei mixture could be used as an oral supplementation to decrease the inflammatory harmful environment associated with colitis.