• 제목/요약/키워드: mixing water

검색결과 2,417건 처리시간 0.032초

태양열 콤비시스템의 축열조에 적용되는 분배기의 효과 (The Effect of a Manifold in a Storage Tank Applied to a Solar Combisystem)

  • 손효석;홍희기
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.322-328
    • /
    • 2014
  • Return piping is used in a solar combi-system for heating and hot water supply. When the temperature of the lower side of a storage tank is low due to hot water usage, the returned hot water after heating is mixed with the lower side cold water of the tank, and the useful energy is reduced. We studied the degree of thermal stratification in the tank, using either a diffuser or a manifold to prevent mixing. Using the diffuser, mixing starts from the bottom of the storage tank. On the other hand, the manifold has the marked effect of preventing mixing. As a result of experiments with changing the diameter and number of holes in the manifold, the optimum condition is 8.5 mm diameter and 96 holes, under the condition of 0.3 lpm.

Optimization of Cholesterol Removal by Crosslinked ${\beta}$-Cyclodextrin in Egg Yolk

  • Jung, Tae-Hee;Park, Heung-Sik;Kwak, Hae-Soo
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.793-797
    • /
    • 2005
  • Optimum conditions for cholesterol removal in egg yolk were evaluated based on ratio of egg yolk-to-water, crosslinked ${\beta}$-cyclodextrin (${\beta}$-CD) concentration, and mixing temperature, time, and speed by adding crosslinked ${\beta}$-CD treated with adipic acid. Cholesterol removal in egg yolk-water mixture increased with increasing ${\beta}$-CD level (10-25%). About 95% was removed by 25% ${\beta}$-CD at 1:1 ratio of egg yolk-to-water and 800 rpm mixing at $40^{\circ}C$ for 30 min. In recycling study, removal rates were measured using ten times recycled crosslinked ${\beta}$-CD in egg yolk, and 85% cholesterol removal was observed with eight times reuse. These results indicated that over 90% cholesterol was removed at 1:1 ratio of egg yolk-to-water, 20% crosslinked ${\beta}$-CD addition, and 30 min mixing with 600 rpm at $40^{\circ}C$.

황토, 점토 및 하수처리오니를 이용한 투수블록 제조 (Manufacturing Water Permeable Block Using Loess, Clay and Waste Sewage Sludge)

  • 김종대;한상무;정병곤
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.476-481
    • /
    • 2015
  • Water permeable block was manufactured using waste sewage sludge, loess and clay for the purpose of recycling waste sludge due to the prohibition of waste sludge ocean dumping. Experiments for determining optimum mixing ratio was conducted by changing sludge content in water permeable block as 5~20%. In respect of compressive strength, $1,600N/cm^2$ ($163.3kg/cm^2$) was obtained when the mixing ratio of sludge : loess : clay were maintained by 5% : 65% : 30%, 10% : 65% : 25% and 15% : 65% : 20%, respectively. These mean that relatively high compressive strength can be obtained when the sludge content is maintained 5, 10, 15% at the 65% of loess content. In terms of water permeability and absorption rate, the higher values can be obtained as the sludge content increases. The optimum mixing ratio of sludge : loess : clay came out to be 15% : 65% : 20% when water permeability, absorption and strength were considered altogether, which matches the result observed by an electron microscope. The heavy metal leaching test result of the prepared permeable block appeared to satisfy the environmental standard in the content of Cd, Cu, Pb and As.

핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구 (A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.

반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가 (Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method)

  • 전지홍;김황희;김춘수;유성열;박찬기
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

낙동강 하구역 준설토 재활용을 위한 시멘트 혼합경량토의 압축강도 특성 연구 (Compressive Strength Characteristics of Cement Mixing Lightweight Soil For Recycling of Dredged Soil in Nakdong River Estuary)

  • 김윤태;김홍주;권용규
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.7-15
    • /
    • 2006
  • In this research, the behavior characteristics of cement mixing lightweight soil (CMLS) for recycling of dredged soil in the Nakdong River estuary are experimentally investigated. CMLS is composed of the dredged soil from Nakdong River estuary, cement, and air foam. For this purpose, uniaxial compression tests are carried out for artificially prepared specimens of CMLS, with various initial water contents, cement contents, and mixing ratio of dredged soils. The experimental results of CMLS indicated that the compressive strength is strongly influenced by the cement contents, rather than water contents and air foam. Compressive strength of CMLS increased with an increase in cement content, while it decreased with an increase in water content and air foam content. It was also found that the modulus of deformation E50 was in a range of 44 to 128 times greater than the value of uniaxial compressive strength, cured in 28 days.

과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석 (A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS)

  • 강형석;김연식;전형길;송철화
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

도시 하수의 해양방류 및 근역혼합특성 분석 (Analysis of Ocean Discharges of Municipal Water and its Near-Field Mixing Characteristics)

  • 김강민;김지연;이중우
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.241-249
    • /
    • 2000
  • The amount of municipal water has been increased rapidly up to now and it is necessary to treat and dispose the wastewater effectively. The recent trend of the effluent disposal system, after treatment, show a nearshore discharge which has an outfall with length somewhere between the shoreline discharge and an extended deepwater outfall. There is no universal solution to municipal water treatment and disposal and each case must be examined on its merits and on economic, technical and environmental bases. In this study we focused mostly on the scientific and engineering aspects of ocean disposal through the outfall. For this purpose, we made an investigation to the near-field characteristics of discharged water and made some comparison with the existing experimental results. We also applied it to the Pusan Jungang Effluent Outfall System, which is planned to build in the Gamchun harbour and will be completed in 2011. The model output showed the trajectoral variation of dilution and mixing behavior for three cases of outfall system. Dilution differences have been simulated and found the highest dilution condition under the different displacement of outfall system. On the basis of these outputs it will be proposed the optimum outfall system type and location.

  • PDF